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ABSTRACT
Graph signal processing models high dimensional data as functions
on the vertices of a graph. This theory is constructed upon the inter-
pretation of the eigenvectors of the Laplacian matrix as the Fourier
transform for graph signals. We formulate the graph learning prob-
lem as a precision matrix estimation with generalized Laplacian con-
straints, and we propose a new optimization algorithm. Our formula-
tion takes a covariance matrix as input and at each iteration updates
one row/column of the precision matrix by solving a non-negative
quadratic program. Experiments using synthetic data with general-
ized Laplacian precision matrix show that our method detects the
nonzero entries and it estimates its values more precisely than the
graphical Lasso. For texture images we obtain graphs whose edges
follow the orientation. We show our graphs are more sparse than the
ones obtained using other graph learning methods.

Index Terms— graph learning, precision matrix estimation,
graph signal processing, generalized laplacian

1. INTRODUCTION

Graph signal processing (GSP) is a novel framework for analyz-
ing high dimensional data. It models signals as functions on the
vertices of a weighted graph, and extends classic signal processing
techniques by interpreting the eigenvalues of the graph Laplacian as
graph frequencies and the eigenvectors as a Graph Fourier Transform
(GFT). Graph structures arise naturally in several domains such as
sensor networks [1], brain networks [2], image de-noising [3], and
image and video coding [4, 5, 6]. A major challenge in this new
field is that of learning the graph structure from data. The learned
graph must have a meaningful interpretation and be useful for anal-
ysis. Also, the learning algorithm must be efficient and scale nicely
as dimensions increase.

In this work, we formulate graph learning as a matrix optimiza-
tion problem and focus on an efficient algorithmic solution. Learn-
ing a graph from data can be posed as follows: given a set of nodes
V and a set of corresponding signals on those nodes, choose an edge
set E and edge weights, or equivalently, estimate a matrix Q whose
nonzero patterns define the edge connectivity of the graph. We pro-
pose a method that takes any symmetric matrix with positive diago-
nal entries, for example an empirical covariance matrix K, and out-
puts a generalized Laplacian (GL) matrix Q [7], a symmetric posi-
tive definite matrix with non positive off diagonal values.

Our solution Q satisfies the following properties: i) it has a prob-
abilistic interpretation, ii) it allows for a GFT, iii) it provides com-
pact data representation, and iv) it comes with an efficient estimation
algorithm.

Using GLs instead of a combinatorial or normalized Laplacian
has several advantages for this problem. First, by allowing self
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loops and not restricting the first eigenpair, the optimization has
fewer constraints, and still includes traditional Laplacian matrices
as special cases. Second, the algorithmic solution is simpler and
allows us to use a block coordinate descent algorithm that updates
one row/column at each iteration. Finally, the eigenvectors of the
GL also satisfy a nodal domain theorem [7, 8], which characterizes
their oscilatory behavior allowing us to define a GL-based GFT.

To find an optimal GL, we solve a Gaussian maximum likeli-
hood problem where Q corresponds to an inverse covariance (preci-
sion) matrix with GL constraints. When K is an empirical covari-
ance matrix, optimizing the ML functional can be intepreted as pro-
moting average smoothness of the data in the GL-GFT. The entries
of Q can be interpreted as partial correlations.

Recently, graph signals have been analyzed as random vectors
with a Gaussian Markov Random Field (GMRF) distribution, whose
Precision matrix is a Laplacian [4, 9, 10]. These papers assume the
Laplacian matrix is known before-hand and do not propose a esti-
mation algorithm. Our proposed Graph learning framework finds
the optimal GL under the GMRF model.

Constructing a graph in which the data is smooth has been the
main idea behind some recent work in graph learning for GSP [11,
12]. In [12] a smoothness functional of the combinatorial Lapla-
cian is optimized to estimate a brain connectivity graph, while in
[11] that idea is extended for noisy data and a more general statisti-
cal model with a PCA interpretation. In [13], a Gaussian ML with
Laplacian constraints and `1 regularization is solved to find a sparse
graph. These methods are difficult to apply because they require
some parameter adjusting to balance sparsity, smoothness and data
consistency, which have to be optimized using an exhaustive grid
search. Furthermore, they do not come with efficient algorithms and
they have to be implemented using general purpose solvers . Our
proposed graph learning algorithm is a type of Coordinate Descent
method, which have become very popular for their efficiency in solv-
ing high dimensional optimization problems [14].

In the statistics community the precision matrix estimation lit-
erature is extensive. The natural candidate for a precision matrix
estimator in the inverse of the empirical covariance but it may not be
sparse. Also, if the number of samples is less than the dimension,
the empirical covariance is singular and inversion is not possible.
For high dimensional data it is common that even if the number of
realizations is large, it is still not enough to obtain a good estimator
and regularization is required. One of the most popular algorithms
is the graphical Lasso [15, 16] because of its simple implementation
and speed. It solves a gaussian ML objective with an `1 regular-
ization term. Other state of the art algorithms include [17, 18, 19].
These matrices are only constrained to be positive semidefinite, and
since spectral graph properties and nodal domain theorems are de-
rived from the theory of non negative matrices, these arbitrary preci-
sion matrices do not allow for a Fourier like interpretation using their
eigensystem. For that reason, in this paper we consider GL matrices.
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For a given covariance matrix K we solve
min

Q�0,qij≤0,i 6=j
− log det(Q) + tr(KQ). (1)

Our block coordinate descent algorithm to optimize (1) is similar to
the one proposed by Slawski and Hein in [20]. At each iteration they
solve a non negative quadratic program (NNQP), while our method
also solves a NNQP but on the dual variable which simplifies the
equation updates and works only with sparse matrices. They analyze
(1) from a statistical estimation point of view and do not make the
connection with GL matrices or GSP applications.

This paper is organized as follows. In Section 2 we introduce
notation on graphs, GSP and GL matrices. In Section 3 we analyze
the solution of (1) from a GSP point of view and derive our algo-
rithm. In Section 4 we show experimental results with synthetic data
and texture images. We end with conclusions and future work in
Section 5.

2. PRELIMINARIES

We denote matrices and vectors by bold letters. For a matrix X =
(xij) its entries are denoted by xij and for a vector x its i-th entry
by xi or x[i]. If A is positive semidefinite we denote it by A � 0.

An undirected graph G = (V,E,Q) is a triplet consisting of a
collection of nodes V = {1, 2, ..., n} connected by a set of edges
E and a symmetric matrix representation Q, where for i 6= j the
link (i, j) /∈ E if and only if the weight Qij = 0. Note that
our graph definition is different from the ones used in recent graph
signal processing literature, where Q is usually restricted to be a
graph Laplacian [21] or an adjacency matrix [22]. An adjacency
matrix is a non negative matrix W, the degree of vertex i is defined
as di =

∑n
j=1 wij and the corresponding degree matrix as D =

diag(d1, · · · , dn). The combinatorial Laplacian is defined as L =

D−W and the normalized Laplacian L = I−D−1/2WD−1/2 =
D−1/2LD−1/2. For more details of these matrices and their graph-
ical properties see [23]. All these matrices are special cases of the
Generalized Laplacian (GL) matrix,

Definition 1 ([7]). A square matrix Q = (qij) is a GL if it is sym-
metric, and Q = αI−N with N a non-negative matrix and α ∈ R.
If Q is also positive semidefinite we call it a Generalized Laplacian
Precision (GLP) matrix.

Any GL can be written as Q = P + L where P = diag(p)
is a diagonal matrix and L1 = 0. The matrix L has the same off
diagonal entries as Q and Lii =

∑
j 6=i qij , thus GLs can be inter-

preted as combinatorial Laplacian with self loops. GLPs are also
called symmetric M-matrices, and satisfy the following:

Proposition 1. [24]. Consider a non singular GLP matrix Q with
orthonormal eigendecomposition Q = UΩUT , U = [u1, · · · ,un]
and Ω = diag(ω1, ω2, · · · , ωn) where the ωi are sorted in increas-
ing order of magnitude. The following properties hold.

1. Q−1 ≥ 0, the inverse GLP is a non negative matrix.

2. The first eigenvector satisfies u1 > 0.

The first property highlights a limitation of the GLP approach,
namely, that it only makes sense if the covariance matrix is non neg-
ative, or very close to a non negative matrix. The second allows us
to interpret the first eigenvector of Q as the DC component of the
graph spectrum. We can define the smoothness of a graph signal fol-
lowing what is tipically done with the combinatorial Laplacian and
say that x is smoother than y iff xtQx

xtx
< ytQy

yty
. The quantity xtQx

xtx
is minimized by the smoothest signal which is u1, and if ωi < ωj

then ui is smoother than uj. The eigenvectors of a GL can be used
to define the GFT of signal x as x̄ = Utx. Another approach to
visualize the GFT is by considering discrete nodal domain theorems
for GL matrices, for space considerations we refer the reader to [7]
for an excelent exposition on GL matrices and their properties.

The probabilistic interpretation of the GLP matrix is provided
by considering a Gaussian Markov Random Field (GMRF) model
for graph signals.

Definition 2. A random graph signal is a Gaussian random vector
x = [x[1], x[2], · · · , x[n]]t with mean µ and GLP matrix Q. And
each x[i] is associated with a node of the graph G = (V,E,Q).

The Gaussianity assumption implies that the partial correlations
are given by [25]

Corr(x[i], x[j]‖x[k] : k 6= i, j) = − qij√
qiiqjj

. (2)

Hence, the non zero pattern of Q encodes the conditional indepen-
dence relations within the graph signal,i.e., x[i] and x[j] are inde-
pendent conditioned in all other variables iff qij = 0.

3. GLP MATRIX ESTIMATION

In this section we present our proposed solution to the problem of
(1). We are interested in learning the graph structure of an n dimen-
sional random graph signal x from i.i.d. realizations x1, · · · ,xN .
We assume the density of x is unknown and has finite second mo-
ments. For simplicity assume x is mean zero, and we have an es-
timator for its covariance K = 1

N

∑N
i=1 xixi

T . We can write the
right side term of (1) as

tr (KQ) =
1

N

N∑
i=1

xi
TQxi =

n∑
i=1

n∑
j=1

qijkij . (3)

By looking at the second term in (3), minimizing tr(KQ) is equiv-
alent to promoting average smoothness. And by looking at the last
equality, the minimization will enforce large off-diagonal negative
values on qij when kij is large. The log det function acts as a bar-
rier on the minimum eigenvalue of Q, thus enforcing the positive
semidefinite constraint. The sign constraints can be handled using
Lagrange multipliers.

The Lagrangian is − log det(Q) + tr(KQ) + tr(ΛQ), with
Λ = ΛT = (λij) ≥ 0 for i 6= j and zero diagonal elements.
Slater’s condition is easy to check, thus strong duality holds, and
since the problem is convex, the solution is unique [26]. Further-
more, the Karush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient for optimality and we have

−Q−1 + K + Λ = 0 (4)

ΛT = Λ ≥ 0, qij = qji ≤ 0, λijqij = 0,∀i 6= j. (5)

If K is not an inverse M-matrix, then from (4) we deduce the matrix
of Lagrange multipliers Λ acts as a perturbation on K such that Q =
(K + Λ)−1 is a GLP matrix.

3.1. A dual block coordinate descent algorithm

In this section we derive a block coordinate descent algorithm for for
solving (1). We analyze the KKT conditions to solve a dual of the
algorithm presented in [20]. Consider a partition of K,Λ and Q−1

as shown below for Q
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(a) wood000

2.7539e−05 1

(b) GLP, |E| = 130

0.10447 1

(c) GLP + kernel, |E| =
112

2.7914e−05 1

(d) GLP + 8-con.,|E| =
113

0.0052266 1

(e) LsigRep, |E| = 1998

(f) wood060

0.053489 1

(g) GLP, |E| = 117

0.11318 10.11318 1

(h) GLP + kernel, |E| =
161

0.16131 1

(i) GLP + 8-con., |E| =
105

0.0063298 1

(j) LsigRep, |E| = 1998

Fig. 1: Texture graphs using our GLP estimation and the LsigRep method from [11]. We consider wood textures, both original and with 60
degree rotation. We normalize each graph by its largest entry and show only off-diagonal entries.

Q =

(
Q11 q12

q12
T q22

)
, (6)

where Q11 is a (n−1)×(n−1) sub-matrix, q12 is a column vector
of size n−1, and q22 is a scalar. The inverse Q−1 has a closed form
expression in terms of its block components

Q−1 =

(Q11 − q12q
T
12

q22
)−1 −Q−1

11 q12

c

−qT
12Q

−1
11

c
1
c

 , (7)

with c = q22 − qT
12Q−1

11 q12. Suppose Q,Λ satisfy the KKT con-
ditions, then we can write them for their last row/column and get

Q11
−1q12

q22 − q12
tQ11

−1q12

+ k12 + λ12 = 0 (8)

q22 − q12
TQ11

−1q12 =
1

k22
. (9)

We can combine both equations with the KKT conditions for λ12

and q12

Q11
−1q12k22 + k12 + λ12 = 0 (10)

λ12 ≥ 0 (11)
q12 ≤ 0 (12)

λ12 � q12 = 0, (13)

where � denotes the Hadamard product (entrywise product). As-
suming Q11 is fixed, the set of equations (10)-(13) are the KKT
conditions for the optimization problem,

min
q12≤0

1

2
q12

TQ11
−1q12 +

1

k22
q12

Tk12. (14)

The block coordinate descent algorithm proposed in [20] iterates
over all row/columns of Q and solves (14). Direct inversion of Q11

at each iteration is avoided by defining Σ = Q−1 and updating both
of them at each iteration using Schur complements and the block par-
titioned matrix inverse formula. To avoid updating a possibly dense
Σ at each iteration, we instead solve the dual of (14) by rewriting
(10)-(13). By multiplying both sides of (10) by Q11 we get

q12 +
1

k22
Q11(k12 + λ12) = 0. (15)

Considering λ12 as the optimization variable, the KKT conditions
(11)-(13) and (15) also characterize the solution of

min
λ12≥0

(k12 + λ12)
TQ11(k12 + λ12). (16)

Once λ12 is found, q12 can be updated using (15). The diagonal
element q22 can be updated combining (9) and (15) to get

q22 =
1

k22
(1− q12

T (k12 + λ12)) =
1

k22
(1− q12

Tk12). (17)

This procedure can be repeated by iterating over all rows/columns
until convergence as shown in Algorithm 1. Notice that if we start
with a sparse Q, and at each iteration set to zero the entries of q12

that have a positive Lagrange multiplier, there will be lower compu-
tation and memory use as we are working with sparse matrices and
vectors. This is in contrast with the algorithm from [20], in which
the dense Σ is updated at each iteration. The methodology to ana-
lyze the graphical Lasso algorithm and to derive the primal graphi-
cal Lasso (P-GLasso) and dual primal graphical Lasso (DP-GLasso)
algorithms from [16] is very similar to what we propose here. Fur-
thermore, the algorithm proposed in [20] has a counterpart in the
P-GLasso, while ours corresponds to the DP-GLasso.

3.2. Incorporating additional information

In some cases there is additional information we would like to in-
corporate. For example in sensor networks, each node represents a
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Algorithm 1 GLP estimation

Require: Q(0) = (diag(K))−1

1: while not converged do
2: Choose it ∈ {1, · · · , n}
3: Qit ← remove it-th row/column of Q(t−1)

4: kit ← it-th column from K and remove its it-th entry
5: kit ← (it, it) entry of K
6: λit ← argminβ≥0(kit + β)TQit(kit + β)

7: qit ← − 1
kit

Qit(λit + kit) (15)

8: qit ← 1
kit

(1− qT
itkit)

9: Q(t) ← update with Qit ,qit and qit
10: t← t+ 1
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Fig. 2: Estimation error of precision matrices using GLP estimation
and DP-GLasso from i.i.d. realizations of a Gaussian process with
GLP matrix.

sensor, and the graph signal could be a measurement, e.g. temper-
ature. One would expect that sensors that are close to each other
should be more strongly connected in the graph. Or in image pro-
cessing, the distances between pixels should influence the topology
of the graph. To add such information, we re-weight the trace term

tr(Q(K� Z)) =

n∑
i=1

n∑
j=1

qijkijzij .

A reasonable choice is the kernel zij = exp(−‖yi − yj‖2/σ2)
where yi is the coordinate vector of the i-th sensor or pixel. This
kernel penalize correlations between sensors that are far apart and
leads to a larger prior when two sensors are nearby . Algorithm 1
does not need to be modified, since the only thing that changes is its
input. This re-weighting method is similar the ones used in adaptive
image filters [27].

4. EXPERIMENTS

4.1. Synthetic Data

In this section we compare our GLP matrix estimation algorithm to
learn a graph from simulated data, and compare it to the DP-GLasso
algorithm. We consider a GL matrix generated using the Erdos-
Renyi model with n = 100 nodes and link probability lp = 0.3
to create an undirected graph. For each edge we assign a random
weight uniformly in [0, 1]. We construct a combinatorial Laplacian
L and create a GLP as Q = I + L, then we compute K = Q−1.

We generate N ∈ {25, 50, 100, 200, 400, 800, 1600, 3200, 6400}
i.i.d. realizations of a Gaussian distribution with covariance K,
then compute the empirical covariance matrix and input that to Al-
gorithm 1. For each N we run the experiment 100 times to find
an estimate Q̄ and compute the average between all relative er-
rors ‖Q− Q̄‖F /‖Q‖F . We plot the average relative errors of our
method and the DP-GLasso with different regularization parameters
in figure 2. For the case N < n, where the empirical covariance
is singular, the GL constraints regularize the solution and the GLP
estimator behaves like the DP-GLasso with a fixed regularization
parameter. For N > n, the empirical covariance estimate is better
our method estimates the precision matrix more accurately. Since
in that regime, regularization is not necessary the DP-GLasso er-
ror converges to a positive value, deviating from the true precision
matrix.

4.2. Graph of a texture image

We consider textures from the USC-SIPI Brodatz1 dataset. In par-
ticular, we use two rotated versions of the wood image at 0 and 60
degree angles. We take 8× 8 image blocks, vectorize them and con-
struct a covariance matrix K and apply Algorithm 1 with input K,
K�WGaussian, and K�W8conn where WGaussian is a Gaus-
sian kernel with σ = 2 that computes distances between pixel co-
ordinates, and W8conn is a mask matrix with values 1 or 0 and
wij = 1 iff the j-th and i-th pixels are vertical or diagonal neigh-
bors and zero otherwise. In figure 1 we show the graphs for each
image which consist of the magnitude of the off-diagonal elements
of the estimated Precision matrices. In the last columns we show
the method from [11]. We manually choose the regularization pa-
rameter β = 6 which roughly controls sparsity, and since we use
noiseless data we set denoising parameter α = 0. The GLP graphs
allow for any type of connection hence the larger weights are well
aligned with the texture orientation. By including the Gaussian and
8 connected mask, the GLP estimation algorithm is told to only look
at covariances with pixels in a neighborhood, thus encouragint those
solutions to connect pixels to their close neighbors. That effect can
be seen clearly for the wood060 image, whose graphs lose direc-
tionality when constructed using re-weighted covariances. For the
wood000 texture the use of re-weighted covariance matrices makes
the resulting graphs more regular. All GLP matrices are sparse and
have around 100 edges, while a fully connected graph has 2016
edges. In the last column we show the graphs constructed using
the method from [11], which also follow the texture orientation pre-
cisely.

5. CONCLUSION

In this paper, we formulate the graph learning problem as a preci-
sion matrix estimation with Generalized Laplacian constraints. We
proposed a novel block coordinate descent algorithm to solve the op-
timization and apply to precision matrix estimation and texture graph
learning. We observe our approach accurately estimates the non ze-
ros as well as the entries of the GLP matrix. For texture images, our
algorithm learns a meaningful and sparse graph that follows the tex-
ture orientation. Possible extensions include developing techniques
to accelerate the optimization and study convergence properties of
block coordinate descent.

1http://sipi.usc.edu/database/
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[17] Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon,
Pradeep K. Ravikumar, and Russell Poldrack, “Big & quic:
Sparse inverse covariance estimation for a million variables,”
in Advances in Neural Information Processing Systems, 2013,
pp. 3165–3173.

[18] Tony Cai, Weidong Liu, and Xi Luo, “A constrained 1
minimization approach to sparse precision matrix estimation,”
Journal of the American Statistical Association, vol. 106, no.
494, pp. 594–607, 2011.

[19] Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowd-
hury, “Covariance selection for nonchordal graphs via chordal
embedding,” Optimization Methods & Software, vol. 23, no. 4,
pp. 501–520, 2008.

[20] Martin Slawski and Matthias Hein, “Estimation of positive def-
inite m-matrices and structure learning for attractive gaussian
markov random fields,” Linear Algebra and its Applications,
vol. 473, pp. 145–179, 2015.

[21] D.I Shuman, S.K. Narang, P. Frossard, A Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” Signal Processing Magazine,
IEEE, vol. 30, no. 3, pp. 83–98, May 2013.

[22] Aliaksei Sandryhaila and Jose M.F. Moura, “Big data analy-
sis with signal processing on graphs: Representation and pro-
cessing of massive data sets with irregular structure,” Signal
Processing Magazine, IEEE, vol. 31, no. 5, pp. 80–90, 2014.

[23] Fan R.K. Chung, Spectral graph theory, vol. 92, American
Mathematical Soc., 1997.

[24] Ky Fan, “Topological proofs for certain theorems on matri-
ces with non-negative elements,” Monatshefte für Mathematik,
vol. 62, no. 3, pp. 219–237, 1958.

[25] Havard Rue and Leonhard Held, Gaussian Markov random
fields: theory and applications, CRC Press, 2005.

[26] Stephen Boyd and Lieven Vandenberghe, Convex optimization,
Cambridge university press, 2004.

[27] P. Milanfar, “A tour of modern image filtering: New insights
and methods, both practical and theoretical,” Signal Processing
Magazine, IEEE, vol. 30, no. 1, pp. 106–128, Jan 2013.

6354


