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ABSTRACT

Recent works on reconstruction of room geometry from echoes as-
sume that the geometry of the sensor array is known. In this paper, we
show that such an assumption is not essential; echoes provide suffi-
cient clues to reconstruct the room’s and the array’s geometries jointly,
even from a single acoustic event. Rather than focusing on the com-
binatorial problem of matching the walls and the recorded echoes, we
provide algorithms for solving the joint estimation problem in practi-
cal cases when this matching is known and the number of microphones
is small. We then explore intriguing connections between this problem
and simultaneous localization and mapping (SLAM), and show that
SLAM can be solved by the same methods. Finally, we demonstrate
how effective the proposed methods are by numerical simulations and
experiments with real measured room impulse responses.

Index Terms— Room geometry, microphone array, localization,
acoustics, simultaneous localization and mapping (SLAM).

1. INTRODUCTION

This paper is inspired by three problems that have recently received
considerable attention. First one is acoustic room geometry recon-
struction: in a series of works [1–3] it has been shown that we can
reconstruct polyhedral rooms from RIRs recorded by a few micro-
phones, and we can do it even with a single source [1].

The second problem is self-localization of ad hoc microphone ar-
rays [4–6]: we now know that it is not necessary to use a tape meter
or devise special calibration rigs [7] to localize the microphones; one
can use spurious acoustic events.

The third problem is simultaneous localization and mapping
(SLAM) [8]. In SLAM, a robot moves along an unknown trajectory
in an unknown environment. Often, we have a noisy idea about the
trajectory. The goal is then to reconstruct both the trajectory and
the map of the environment. The map is often specified in terms of
landmarks, and reconstructing the map is equivalent to localizing the
landmarks. There is a variety of sophisticated measurements that
can be used to do SLAM. The most rudimentary one is a pure range
measurement, leading to what is known as range-only SLAM [9–12].

We want to show that echoes contain a surprising amount of in-
formation and that very little need be known a priori in order to reason
about the geometry of the sensing setup or the room. Along the way,
we show that room reconstruction (with or without knowing the array
geometry), microphone self-localization, and range-only SLAM are
all instances of the multidimensional unfolding (MDU) problem [13].

This work was support by the Swiss National Science Foundation grant
number 200021 138081, “Non-linear Sampling Methods”.

Fig. 1. Illustration of the image source model for first- and second-order
echoes. The vector ni is the outward-pointing unit normal associated with
the ith wall. Stars denote the image sources, and rsij is the image source cor-
responding to the second-order echo. Sound rays corresponding to first re-
flections are shown in purple, and the ray corresponding to the second-order
reflection is shown in green.

Finally, an important contribution of this work is to show that
these problems can be solved with very few measurements using Eu-
clidean distance matrices (EDMs) [14, 15]. This approach also allows
us to take advantage of prior geometric knowledge, much like the in-
ertial information in SLAM.

2. ROOM RECONSTRUCTION

We start by discussing room reconstruction (“Can one hear the shape
of a room?”), and formulating it as an optimization problem:

Problem 1. Let R Ä R3 be a convex polyhedral1room described by
K walls with normals tnku and centroids tpku. Given a set of M
microphones at known locations trm P Ru, and a single impulsive
source at an unknown location s P R, determine the shape of the
room.

We extract parts of the solution from [1] that will provide the con-
text for the remainder of the article. First, we model the walls using
the image source model [16, 17], thus replacing every reflection by

1Convexity is only one possible model that enables us to reconstruct the
room. The algorithm will correctly localize the image sources regardless of
whether the room is convex or not. If we are only after the image sources
and the microphone locations (and in most audio applications that is what we
need), then we do not need convexity. If we do want to reconstruct the room
shape, then a model model is necessary, especially with few microphones.
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an equivalent point source. With reference to Fig. 1, a first order
reflection—corresponding to a single bounce off a wall—can be mod-
eled by a virtual source that is the mirror image of the real source
across the kth wall. An image source r

sk of s corresponding to the kth
wall is given as r

sk “ s`2 xpk ´ s,nkynk. Higher order reflections
are simply images of lower order images. An idealized room impulse
response (RIR) measured by a microphone at position r P R3 is a
train of pulses,

hpt; rq “

ÿ

k•0

↵k�pt ´ ⌧kprqq “

ÿ

k•0

↵k�pt ´ kr ´ skk{cq, (1)

where c is the speed of sound, psk, k • 0q lists the real source and
all its images up to an arbitrarily high order, and ↵k are the received
magnitudes, which depend on the wall absorption coefficients and the
distance of the image source from the microphone. From a set of
recorded RIRs thpt, rmqu

M
m“1 as in (1), we estimate the set of dis-

tances r
dmk between the mth microphone and the kth image source.

Knowing the locations of the image sources is equivalent to know-
ing the room geometry, thus Problem 1 can be recast as a problem of
simultaneously localizing multiple point sources. The optimal loca-
tions are found as the unique minimizer of the s-stress cost function:

t

p
sku

K
k“1 “ argmin

tsku

Mÿ

m“1

Kÿ

k“0

p

r
d

2
m⇡mpkq ´ krm ´ skk2q

2
, (2)

where permutations ⇡mpkq model the ambiguity in grouping the
pulses in M measured impulse responses corresponding to the same
echo. A discussion of echo sorting, which solves this problem (see
[1, 18]), is outside of the scope of this article.2 We assume that this
assignment is known, and in the following set ⇡mpkq “ k.

Thanks to the assumption that the array geometry is known, (2)
decouples over image sources—we can solve it one sk at a time:

p
sk “ argmin

sk

Mÿ

m“1

p

r
d

2
mk ´ krm ´ skk2q

2
. (3)

The problem (3) is a variant of multilateration, and it is not convex.
Nevertheless, it can be solved exactly using efficient algorithms [19].

3. ZERO-KNOWLEDGE CALIBRATION

So far, we assumed that we know the geometry of the microphone ar-
ray. The locations of the real source and of the image sources were
then produced by the algorithm. Imagine now that we simply place
the microphones in the room and measure the impulse responses from
a single source, but we forget to measure the inter-microphone dis-
tances. Can we recover the geometry of the microphone array and
save the experiment? If yes, then we can clearly recover the room by
the results of Section 2. We consider the following problem:

Problem 2. Let a polyhedral room be described by K walls with nor-
mals tnku and centroids tpku. Given a set of M microphones at un-
known locations trmu, and a single impulsive source at an unknown
location s, determine the microphone locations and the shape of the
room.

We show that, remarkably, the array geometry is not necessary—
echoes can provide it. A preliminary discussion of this phenomenon
was given in [18].

2For small microphone arrays, or in the case of SLAM, this is not an issue.
See the brief discussion in Section 4. For details on how echo sorting can be
solved in the case of room reconstruction, see [1]

Similarly to the previous section, we want to solve the problem

t

p
sku , t

p
rmu “ argmin

tsku,trku

Mÿ

m“1

Kÿ

k“0

p

r
d

2
mk ´ krm ´ skk2q

2 (4)

where s0 “ s, psk, k • 1q are the image sources. However, (4) is
considerably more challenging, as we optimize over both trmu and
tsku.

This problem is equivalent to the ad hoc microphone array local-
ization problem. There, we aim to recover the geometry of an ad hoc
microphone array without tape meters or specialized infrastructure,
using distance measurements between a set of acoustic events and the
microphones. Here, the acoustic events are virtual—they are the im-
age sources corresponding to walls. Both problems are instances of
MDU [13], where the aim is to localize a set of points partitioned in
two subsets from distances measured between the points belonging to
different subsets.

A simple degree-of-freedom-counting exercise tells us that there
are MK distance measurements, 3K ` 3M unknown coordinates,
and 6 scalars required to specify the translation and the rotation of the
coordinate system (which cannot be reconstructed). Requiring that
MK • 3K`3M ´6 gives that the minimal cases are pM “ 4,K “

6q, pM “ 6,K “ 4q, and pM “ 5,K “ 5q. In these cases the
solution set is a zero-dimensional variety [20] comprising many points
(38 when M “ 4,K “ 6), some of which are complex, and some
real. Thus, to guarantee uniqueness without additional constraints, we
need more than the minimal number of points. In what follows, we
discuss the strategy to solve (4) using Euclidean distance matrices.

3.1. Euclidean Distance Matrices

An EDM corresponding to the point set X “ rx1, . . . ,xN s is the
matrix D “ rd

2
ijs, where

d

2
ij “ kxi ´ xjk2 , (5)

and k ¨ k is the Euclidean norm. By expanding the norm, we see that
D can be computed at once as

D “ KpGq

def
“ diagpGq1J

` 1 diagpGq

J
´ 2G, (6)

where G def
“ X

J
X is the Gram matrix. Let J def

“ IN ´

1
N 11J be the

geometric centering matrix of size N . Then assuming that the point
set is centered, X1 “ 0 , straightforward computation shows that

G “ ´

1
2JDJ (7)

because the terms diagpGq1J and 1 diagpGq

J are annihilated by
J . The point set X can then be reconstructed up to a rotation and
reflection by factoring G “ X

J
X . For more intuitions about (6) and

(7) see [14, 15].

3.2. EDM Completion for Multidimensional Unfolding

A typical EDM problem is to localize the point set from noisy and
incomplete distances. A characterization of EDMs by Gower [21]
states that D is an EDM if and only if the corresponding geometrically
centered matrix ´

1
2JDJ is positive-semidefinite (that is, if it is a

Gram matrix).
We can use this correspondence to cast EDM completion and ap-

proximation as a semidefinite program. While the above characteriza-
tion describes an EDM of an N -point configuration in any dimension,
we are interested in a situations where d ! N (d “ 2 or d “ 3). It is
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Fig. 2. Microphone calibration as an example of MDU. We can measure only
the propagation times from acoustic sources at unknown locations, to micro-
phones at unknown locations. The corresponding revealed part of the EDM
has a particular off-diagonal structure.

easy to adjust for this case by requiring that the rank of the centered
Gram matrix ´

1
2JDJ be bounded by d.

Let r
D P RNˆN be a noisy measurement of an EDM, with some

entries missing (we can arbitrarily set them to zero). Let further W P

RNˆN have ones at positions where r
D is observed, and zeros for the

missing entries. Then the EDM corresponding to points in Rd which
best fits the measurements r

D in the sense of the s-stress metric is
given as an optimizer of the following program:

minimize
G

���W ˝

´
r
D ´ KpGq

¯���
2

F

subject to G © 0, G1 “ 0 , rankpGq § d.

(8)

Unfortunately, the rank constraint makes (8) hard to solve directly. A
common strategy is to relax the rank by the trace norm; however, per-
haps surprisingly, trace maximization is often a better choice when
working with EDMs [15]. In the next section, we discuss an alter-
native technique that is particularly well-suited to our problems—the
so-called convex iteration [14].

With these notations in hand, it is now simple to frame (4) as an
EDM completion problem. Let D#

def
“ rd

2
mks P RMˆK . Then we

can solve (4) by defining

WMDU
def
“

„
0MˆM 1MˆK

1KˆM 0KˆK

⇢
,

r
D

def
“

„
0MˆM D#

D

J
# 0KˆK

⇢
. (9)

and plugging them into (8).

3.3. The Challenge of Few Microphones

The relaxation of (8) works well for multidimensional unfolding (that
is, it returns a point set with the correct embedding dimension) when
the number of points is large enough (empirically at least 10 or 15 mi-
crophones and equally many acoustic events [22]). This number grows
larger as the quality of measurements deteriorates. But in a typical
room, the number of echoes that we may clearly detect (while keep-
ing the sorting easy) will often be smaller. Furthermore, we would like
to localize smaller arrays, perhaps with only four or five microphones.

Thus we need a method that promotes low rank (low embedding
dimension) more aggressively, while still minimizing s-stress subject
to measurement constraints. We use the iteration of two convex pro-
grams proposed by Dattorro [14]:

(i) G

‹
“ argmin

 
xG,Z

‹
y ` �

���W ˝ p

r
D ´ KpGqq

���
2

F
:

G © 0, G1 “ 0
(

(ii) Z

‹
“ argmin

 
xG

‹
,Zy : 0 ® Z ® I, tracepZq “ N ´ d

(
,

(10)

with Z

‹ initialized as I (that is, starting with an ordinary trace mini-
mization).
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Fig. 3. Microphone localization in zero-knowledge calibration. Left: For each
of the 4 different noise levels, we generated 100 random configurations of 6
microphones in a 1 m3 cube at the center of a 5.1 m ˆ 3.7 m ˆ 2.6 m shoebox
room. For every microphone configuration, a source location was randomly
generated inside the room. We used the distances to this source and 5 nearest
image sources to estimate the geometry of the microphone array. Right: Ex-
periment with real recorded RIRs in a non-shoebox room from [1]. Unlike in
[1], we assume no knowledge of the microphone positions; rather, we estimate
them from echoes. Blue disks show the locations estimated from tape meter
measurements; red circles are blindly estimated locations from echoes only;
ticks are in meters.

The crude physics of this method are as follows: the value of
the second program at optimum is

∞N
i“d`1 �ipG

‹
q where �1pG

‹
q •

�2pG

‹
q • ¨ ¨ ¨ • �N pG

‹
q are the sorted eigenvalues of G‹. Thus

with a so-chosen Z

‹, minimizing xG,Z

‹
y will have the effect of re-

ducing the (positive) sum of the N ´ d smallest eigenvalues of G.
A deeper intuition of why this method succeeds with high likelihood
is available in [14]. As we will see, the convex iteration performs
very well in practice. This formulation will be particularly convenient
when we come to SLAM.

3.4. Results

Fig. 3 shows the average error in microphone localization for a random
6-microphone array and a random source position inside a shoebox
room. Even with noise and a near-minimal configuration, we obtain
accurate reconstructions.

On the right, we show the results with the real data from a non-
shoebox room used in experiments in [1]. We stress that the recon-
struction was obtained with only 5 microphones and 6 sources (the
real one and 5 virtual). There is no prior knowledge about the micro-
phone locations—they are reconstructed from echoes. The accuracy
of localization is surprisingly high, better than 1 cm per microphone.
Applying the convex iteration (10) is essential to achieve such accu-
racy with few measurements.

4. ACOUSTIC SLAM

We started with the inverse problem of room geometry where we as-
sumed that we know the geometry of the microphone array. Next, we
have shown that if can detect only a couple of reflections, then the
information on array geometry can be recovered from the measure-
ments. We now assume that we only have a single microphone, albeit
one that moves, and we reinterpret the derived results in the context
of SLAM. Effectively, we show that range-only SLAM is yet another
instance of MDU.

Imagine a robot moving about in a room, as illustrated in Fig. 4,
and denote its position by rptq. Let the robot record the room response
(i.e., the distances to the image sources) excited by the loudspeaker at
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Fig. 4. Acoustic range-only SLAM. Left: Illustration of a robot moving in a room with the notation. Middle: A lemniscate trajectory (12) and the projection of
the actual steps. Right: The induced RIR matrix—the horizontal axis corresponds to robot’s steps, the vertical axis to the time in the RIRs, and the pixel color
encodes the magnitude of the RIR at the given robot’s position and time.

s at times t1, . . . , tM . Setting rm
def
“ rptmq, we see that range-only

SLAM precisely corresponds to zero-knowledge calibration (Problem
2), thus we can address it as an instance of EDM completion.

This perspective is different from what is typically done in SLAM.
The usual approach is through some variant of Bayesian inference,
using the Kalman (or extended Kalman) filter, or more general ap-
proaches such as FastSLAM [23]. In particular, leveraging ultra-
wideband (UWB) multipath for SLAM in a probabilistic framework
has been demonstrated by Leitinger and coauthors [24]. Our aim here
is to show that, at its core, this is a Euclidean geometry problem.

We note that in the case of SLAM, echo sorting is much less of an
issue. To understand why, take a look at Fig. 4B and C. If the robot
follows a trajectory such as a lemniscate in Fig. 4B and measures the
impulse response at every step, the matrix of impulse responses will
be the one in Fig. 4C. Such a visual representation facilitates following
the contributions of the same echo across many steps.3

A major appeal of Bayesian methods is that it is relatively straight-
forward to incorporate information about the robot’s kinematics or
landmark distribution into the estimation. We now show by an ex-
ample that similar feats are possible with EDMs.

Number of robot positions (number of steps + 1)

Fig. 5. Position estimation errors in SLAM. The robot was following a lemnis-
cate (12), with the step size tn “ 0.3n (« 30 cm) in the room of dimensions
5 m ˆ 4 m ˆ 2.6 m. We varied the number of microphones, and used the
real source and the 6 first-order image source for the estimation. Errors are
shown for the microphone localization (left), and the image source localization
(right), with and without the step size constraints. The constraints are given as
bounds on the step size between -20% and +20% of the true value.

Assume, for instance, that the source emits pulses at regular in-
tervals, and that we know approximately the robot’s speed. Then it
is realistic to have certain bounds on the length of the robot’s “step”
between two measurements. We can easily add this constraint to the

3We leave a detailed analysis of Fig. 4C to a forthcoming publication.

iteration . Namely, we modify the step (i) of (10) as

(i1) G

‹
“ argmin

 
xG,Z

‹
y ` �

���W ˝ p

r
D ´ KpGqq

���
2

F
:

G © 0, G1 “ 0 ,

KpGqi,i`1 P r�

2
1,�

2
2s, 1 § i † M

(
.

(11)

The new constraint defines the set of Gram matrices that satisfy the
step bounds. We note that instead of adding constraints, we could
include the priors in the Lagrangian form, which would allow for more
sophisticated error models. Numerical experiments reveal that such
constraints can significantly improve the localization accuracy.

4.1. Numerical Experiments

Fig. 5 shows the error in the reconstruction of the trajectory and of the
virtual sources for a robot that moves along the lemniscate

xptq “ 2 `

1.5 cosptq

1 ` sinptq

2
, yptq “ 2 `

sinptq cosptq

1 ` sinptq

2
, zptq “ 0.9,

(12)
Clearly, introducing the bounds on the robot’s step size dramatically
improves the quality of the localization, even when the number of
steps is very small. Introducing such simple constraints enables us to
localize fewer microphones than what is theoretically possible in the
minimal unconstrained case. Note that no knowledge about the direc-
tion of the robot was assumed, only bounds on the distance traveled.

5. CONCLUSION

We have shown that it is possible to efficiently reconstruct the geome-
try of the microphone array from echoes only, and consequently solve
the room reconstruction problem without first measuring the micro-
phone array geometry. The key is to pose the problem as a constrained
optimization problem and use adequate methods for promoting low
embedding dimension.

A particularly interesting finding is that the range-only SLAM can
be posed and solved as a pure geometric problem. This gives an in-
teresting alternative to the more common probabilistic solutions often
involving the application of the extended Kalman filter, or of particle
filters. In fact, the original convex formulation is flexible enough to
allow to add constraints resembling priors in traditional approaches to
SLAM. We have shown that with such knowledge one can obtain very
accurate localization in only a few steps.

Future work involves dealing with measurement uncertanties, un-
known emission times, efficient implementations, and a theoretical
analysis of the algorithm performance.
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