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ABSTRACT

Sound source localization is addressed by a novel Bayesian approach
using a data-driven geometric model. The goal is to recover the tar-
get function that attaches each acoustic sample, formed by the mea-
sured signals, with its corresponding position. The estimation is de-
rived by maximizing the posterior probability of the target function,
computed on the basis of acoustic samples from known locations (la-
belled data) as well as acoustic samples from unknown locations (un-
labelled data). To form the posterior probability we use a manifold-
based prior, which relies on the geometric structure of the manifold
from which the acoustic samples are drawn. The proposed method
is shown to be analogous to a recently presented semi-supervised
localization approach based on manifold regularization. Simulation
results demonstrate the robustness of the method in noisy and rever-
berant environments.

Index Terms— relative transfer function (RTF), kernel func-
tion, manifold-based prior, manifold regularization.

1. INTRODUCTION
Sound source localization is of great merit in a large variety of ap-
plications, including: video conferencing, automatic camera steering
and speaker separation. For this reason, it has attracted the attention
of many researchers along the years, and a wide variety of local-
ization methods have been proposed. However, classical localiza-
tion algorithms are highly sensitive to adverse conditions, namely,
to the presence of high reverberation and background noise. Thus,
the challenge is to form a robust localizer that successfully circum-
vents these limiting factors.

Conventional localization approaches can be roughly divided
into two main categories: single- and dual-step approaches. In the
first class of algorithms, the location of the source is estimated di-
rectly from the measured signals. Numerous methods fall under this
category, most of which derived by applying the maximum likeli-
hood (ML) criterion [1–4], or spectral methods such as the well-
known multiple signal classification (MUSIC) algorithm [5]. In the
dual-stage class, the first step is to estimate the time difference of ar-
rival (TDOA) for each pair of microphones [6–10]. Next, the TDOA
readings are combined to attain the actual localization [11, 12].

Common to most conventional localization methods is that they
solely depend on the measured signals, and do not utilize any prior
information regarding the acoustic environment in which the source
is located. However, in some scenarios, e.g. in meeting rooms or
cars, the source is expected to be positioned in a specified region
in the enclosure. Thus, representative samples from the region of
interest can be measured in advance. Such representative samples
provide an additional information about the acoustic environment

that may be utilized to develop robust localization methods. Thus
far, only few attempts were made to involve training information for
performing source localization [13–18].

In this paper we present a semi-supervised approach on the basis
of labelled (attached with corresponding locations) and unlabelled
(from unknown locations in the predefined region of interest) repre-
sentative samples. It is important to emphasize that these representa-
tive samples should be generated uniquely for each specific acoustic
environment. Generating labelled data is a cumbersome task, and
hence the amount of labelled data is assumed to be very limited.
However, the availability of unlabelled data is much greater, since
it can be collected whenever someone is speaking in the enclosure
of interest. This observation motivates the development of a semi-
supervised localization approach.

Our goal is to estimate the target function which receives an
acoustic sample and returns its corresponding location. The tar-
get function is estimated in this work using a Bayesian inference
framework which involves a likelihood function and a prior proba-
bility. While the likelihood function measures the correspondence
of the target function to the labelled examples, the prior probabil-
ity reflects our prior belief regarding the distribution of the target
function. In particular, following Sinhwani et al. [19], we propose
to use a manifold-based prior which relies on the geometric struc-
ture of the RTF samples, implied by unlabelled samples. We dis-
cuss the analogy of the Bayesian approach to a recently presented
semi-supervised source localization method based on manifold reg-
ularization [20]. The paper is supported by simulation results that
demonstrate the robustness of the proposed method to noise and re-
verberation.

2. PROBLEM FORMULATION
We consider the following acoustic environment. A source is lo-
cated at position p = [px, py, pz] in a reverberant enclosure. The
source is emitting an unknown signal s(n) which is measured by a
pair of microphones, also located in the enclosure. The noisy mea-
surements, denoted by x(n) and y(n), are given by a convolution
between the clean source signal and the corresponding acoustic im-
pulse response (AIR), contaminated by stationary noise signals:

x(n) = a1(n,p) ∗ s(n) + u1(n)

y(n) = a2(n,p) ∗ s(n) + u2(n) (1)

where n is the time index, ai(n,p), i = 1, 2 are the corresponding
AIRs relating the source at position p and each of the microphones,
and ui(n), i = 1, 2 are the noise signals.

A feature vector that represents the characteristics of the acoustic
environment and is independent of the source signal, is constructed
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based on the two measured signals. We propose to use the relative
transfer function (RTF) [21, 22], defined by: Hyx(k,p) = A2(k,p)

A1(k,p)
,

where A1(k,p) and A2(k,p) are the acoustic transfer functions
(ATFs) of the respective AIRs, and k denotes a discrete frequency
index. Since the ATFs are unavailable, the RTF is estimated instead
based on the measured signals:

Ĥyx(k,p) ≡ Ŝyx(k,p)

Ŝxx(k,p)
∼=
A2(k,p)

A1(k,p)
(2)

where Syx(k,p) and Sxx(k,p) are the cross power spectral den-
sity (CPSD) between y(n) and x(n) and the power spectral den-
sity (PSD) of x(n), respectively. Note that the estimator of (2)
is biased due to the additive noise [23]. However, we will show
that the proposed method is insensitive to this type of estima-
tion errors. Accordingly, we define the feature vector h(p) =

[Ĥyx(0,p), . . . , Ĥyx(D−1,p)]T as the concatenation of estimated
RTF values in D frequency bins. In practice, we discard high fre-
quencies in which the ratio in (2) is meaningless due to weak speech
components. For the sake of brevity, we omit the dependency on the
position from the notation, and denote the RTF feature vector by h.

From a probabilistic view point, h is a random vector, drawn
from some probability distribution pH . Though originally the RTFs
have a high dimensional representation due to reverberation, we have
shown in [22] that they pertain to a nonlinear manifold of much
lower dimensions. The support of pH , representing the manifold
from which the RTFs are drawn, will be denoted byM.

3. BAYESIAN INFERENCE FOR SEMI-SUPERVISED
LOCALIZATION

We assume that we have a training set consisting of l labelled RTF
samples, attached with their respective locations, and u unlabelled
RTF samples from unknown locations. Let HL = {hi}li=1 be the
set of l labelled samples, and PL = {p(hi)}li=1 their associated la-
bels. The set of unlabelled samples is denoted byHU = {hi}ni=l+1,
where n = l + u. The training set, consisting both labelled and
unlabelled samples is denoted by HD = HL ∪HU = {hi}ni=1.

The aim of this work is to estimate the locations corresponding
to a test set of q pairs of measurements {xi(n), yi(n)}mi=n+1 of un-
known sources from unknown locations, where m = n + q. The
corresponding set of RTF samples is denoted by HT = {hi}mi=n+1.
The entire set, comprised of both the training and the test samples,
is denoted by H = HD ∪HT = {hi}mi=1.

It is important to emphasize that both the RTF samples and the
measured positions are treated as random vectors/variables. We as-
sume that they are generated by the following stochastic model:
First, an RTF sample residing in the manifoldM is drawn accord-
ing to pH (not used explicitly in the following computations). The
position of the source is a random variable obtained as an output of
the target function that receives the RTF sample as an input. The tar-
get function is assumed to follow a stochastic process. Finally, the
measured position is a noisy version of the actual position due to un-
certainty or imperfection of the measurements. Following this prob-
abilistic model, a Bayesian inference framework can be formulated
for the problem of estimating the position attached with an observed
RTF sample, given the sets of labelled and unlabelled samples. A
flow diagram of the statistical model is illustrated in Fig. 1.

3.1. Bayesian Formulation
Let fc : CD → R c ∈ {x, y, z} be the function that attaches each
RTF sample to one of the coordinates of the corresponding source
position, i.e. f(h) = pc. In this paper we focus on estimating one

𝑥(𝑛) 𝑦(𝑛) 

C\PSD RTF h f(h) 



f() p(h) 

Fig. 1: Flow diagram of the statistical model.

position coordinate, hence, we omit the coordinate subscript. How-
ever, the analysis, the results and the algorithm described henceforth
can be naturally extended to the estimation of multiple coordinates.

We treat the target function as a stochastic process, i.e., as a
collection of random variables of the form f(h), h ∈ M. Accord-
ingly, the target function can be estimated based on the following
posterior probability, given by Bayes’ rule:

p(f |PL, HL, HU ) ∝ p(PL|f,HL) · p(f |HL, HU ) (3)

The posterior function is composed of two parts: the likelihood func-
tion p(PL|f,HL) and the prior probability p(f |HL, HU ) of f . The
likelihood function measures the correspondence of the values of
the function f , at the labelled samples HL, to the measured posi-
tions PL. The prior probability specifies our a priori belief about the
properties of f .

It is assumed that the measured positions PL = {p(hi)}li=1

follow a noisy observation model, given by:

p(hi) = f(hi) + ηi i = 1, . . . , l (4)

where ηi ∼ N (0, σ2) i = 1, . . . , l are i.i.d. Gaussian noises, inde-
pendent of f . This model reflects the uncertainty due to imprecise
microphones’ calibration or imperfect measurement of the source
position while acquiring the labelled set. Under this model, the like-
lihood function is given by:

p(PL|f,HL) =
1√

2πσ2
exp

{
− 1

2σ2

l∑
i=1

(p(hi)− f(hi))
2

}
(5)

As for the prior of the function f , we assume that it follows a
Gaussian process [24–26]:

f ∼ GP(ν, k) (6)

where ν is the mean function and k is the covariance function, that
specify the Gaussian process. The choice of a Gaussian process as
a prior was shown to give good results in regression problems [26].
Moreover, this choice is justified by its analogy to the optimization
framework discussed in Section 4.

In the following, we assume that the mean function ν is constant
and equals zero to maintain simplicity of the equations. However, all
the results apply also to any general mean function, with only small
changes. The function k : M×M −→ R, often referred to as a
kernel function, is a pairwise function that evaluates the covariance
of each pair of samples drawn from the process f . In order to serve
as an admissible covariance function, k should be a symmetric and
positive-definite kernel.

According to (6), the random vector fH = [f(h1), . . . , f(hm)],
has a joint Gaussian distribution, i.e.,

fH ∼ N (0m,ΣHH) (7)

where 0m is an m × 1 vector of all zeros and ΣHH is the covari-
ance matrix with elements k(hi,hj), hi,hj ∈ H . Usually, the
covariance between f(hi) and f(hj), given by k(hi,hj), depends
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only on the corresponding coordinates hi and hj , and is indepen-
dent of the rest of the set. For example, the covariance can be
represented by a Gaussian kernel with variance εk: k(hi,hj) =
exp{−‖hi −hj‖2/εk}, where ‖ · ‖ denotes the l2 norm. In the fol-
lowing, this type of kernel and the corresponding Gaussian process,
will be referred to as a standard kernel and a standard Gaussian pro-
cess, respectively. In the remainder of this section we use a standard
kernel function which forms a prior probability that does not exploit
the available set of unlabelled data HU . In the next section, we de-
fine a modified kernel function k̃ that depends also on the unlabelled
data, thereby better exploiting the geometric properties of the mani-
foldM.

We use a transductive view point [26], i.e. rather than deriving
a general estimator of the function f , which is a cumbersome task,
we estimate the function value at some specific test point ht ∈ M
from an unknown position. The corresponding posterior probability
is p(f(ht)|PL, HL). According to (5) and (7), the function at the
test point f(ht) and the concatenation of all labelled training posi-
tions pL = vec{PL} ≡ [p(h1), . . . , p(hl)]

T are jointly Gaussian,
with: [

pL

f(ht)

] ∣∣∣∣HL ∼ N
(

0l+1,

[
ΣLL + σ2Il ΣLt

ΣT
Lt Σtt

])
(8)

where ΣLL is an l × l covariance matrix defined over the function
values at the labelled samplesHL, ΣLt is an l×1 covariance vector
between the function values at HL and f(ht), Σtt is the variance
of f(ht), and Il is the l × l identity matrix. This implies that the
conditional distribution p(f(ht)|PL, HL) is a multivariate Gaussian
with mean µcond and variance σ2

cond given by:

µcond = ΣT
Lt

(
ΣLL + σ2Il

)−1
pL

σ2
cond = Σtt −ΣT

Lt

(
ΣLL + σ2Il

)−1
ΣLt. (9)

Hence, the maximum a posteriori probability (MAP) estimator of
f(ht) (which coincides with the minimum mean squared error
(MMSE) estimator in the Gaussian case) is given by:

f̂(ht) = µcond = ΣT
Lt

(
ΣLL + σ2Il

)−1
pL (10)

3.2. Data-Driven Prior
In this section we follow Sinhwani et al. [19] and introduce an alter-
native prior for the function f , which is based on the manifoldM
from which the RTF samples are drawn. The new prior, computed
based on both labelled and unlabelled data, is a Gaussian process
with a modified kernel function that reflects the intrinsic patterns
in the data. We form a discrete representation of the manifold by
a graph defined over the entire training set HD . The graph nodes
are the training samples and the weights of the edges, constituting
an n × n affinity matrix W, are computed using a kernel function.
We denote by G an abstract collection of random variables that rep-
resents the geometric structure of the manifold. Accordingly, the
likelihood of the geometry variables G can be defined by:

P (G|fD) ∝ exp

{
− γM

2

(
fTDMfD

)}
(11)

where γM is a scaling factor, fD = [f(h1), . . . , f(hn)]T and M
is the graph Laplacian given by M = S −W. Here, the diagonal
matrix S is given by Sii =

∑n
j=1Wij . The probability in (11)

reflects the tendency of f(hi) and f(hj) to have similar values when
the corresponding RTF samples have strong similarity, namely they
are closely connected in the graph W. In this sense, the likelihood
function is a measure of correspondence between the values of the

target function f and the structure of the manifold, implied by the
geometry variables.

In order for the model to be extendible to additional test
data HT , we make the assumption that given fD , the geometry
variables are independent of the function values in other points,
i.e. p(G|fH) = p(G|fD). By this assumption we avoid the re-
computation of the graph Laplacian M for the new dataset.

Accordingly, the posterior of fH , given the geometry variables,
constitutes a manifold-based prior for fH , which can be written as:

p(fH |G) = p(G|fH) · p(fH)/p(G) = p(G|fD) · p(fH)/p(G)

∝ exp

{
− γM

2

(
fTDMfD

)}
p(fH) (12)

where p(fH) ∼ N (0m,ΣHH) is the prior probability of samples
drawn from the standard Gaussian process defined in (7). Hence,
the posterior distribution can be written as the Gaussian distribution
p(fH |G) ∝ exp

{
− 1

2
fTHΣ̃−1

HHfH
}

, where:

Σ̃−1
HH =

[
ΣDD ΣDT

ΣT
DT ΣTT

]−1

+ γM

[
M 0n

0T
n 0

]
. (13)

Based on the matrix inversion lemma it can be shown [19] that the
elements of Σ̃HH are given by:

k̃(hi,hj) = k(hi,hj)− γMΣT
Di(In + γMMΣDD)−1MΣDj

(14)
for hi,hj ∈ H , where ΣDi denotes the column vector
[k(h1,hi), . . . , k(hn,hi)]

T .
To conclude, the Gaussian process conditioned on the geometry

variables G is associated with a modified covariance function k̃, that
will be termed manifold-based kernel. Based on this new data-driven
prior with the manifold-based kernel k̃, an alternative estimator for
f(ht) is then given by:

f̂(ht) = Σ̃T
Lt

(
Σ̃LL + σ2Il

)−1

pL. (15)

which is the similar to (10), where the covariance terms Σ̃ are com-
puted using k̃ rather than k.

4. ANALOGY TO MANIFOLD REGULARIZATION FOR
LOCALIZATION

In [20] we have presented a semi-supervised source localization
algorithm, based on manifold regularization. We briefly describe
the concepts of the proposed approach, and its equivalence to the
Bayesian framework introduced here. The idea is to formulate the
estimation of the target function f as a regularized optimization
problem. We assume that the target function belongs to a repro-
ducing kernel Hilbert space (RKHS), denoted byHk. An RKHS is a
Hilbert space of functionsM→ R, associated with a unique kernel
function k. The kernel function has the reproducing property, which
means that it evaluates each function in the space by inner product,
i.e.: 〈f(·), k(h, ·)〉 = f(h), for all f ∈ Hk and h ∈ M. Ac-
cordingly, every function in the space can be represented as a linear
combination of the kernel functions.

There is a close relation between the RKHS and the Gaussian
process, when they are associated with the same kernel function [19].
In this section we show that these two different view points lead to
the same estimators.

As introduced by Belkin et. al. [27], a regularized optimization
problem in an RKHS, can be defined by:

f̂ = argmin
f∈Hk

1

σ2

l∑
i=1

(p(hi)−f(hi))
2+‖f‖2Hk

+γM fTDMfD (16)
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where ‖ · ‖2Hk
is the RKHS norm. The optimization consists of three

parts: a cost function defined over the labelled examples (the first
term), a smoothness penalty in Hk (the second term) and a smooth-
ness penalty with respect to the manifoldM (the third term). The
role of the squared cost function is to measure how f fits the data,
which is analogous to the role of the Gaussian likelihood function
in (5). In the same manner, the second and the third terms in (16)
are analogous to the data-driven prior presented in Section. 3.2. It
was shown in [27], that the two regularization terms in (16) can be
merged into a single regularization term, by defining a new RKHS
H̃k, i.e.: ‖f‖2H̃k

= ‖f‖2Hk
+ γM fTDMfD . The new RKHS H̃k is

associated with a modified kernel k̃ defined similarly to (14). There-
fore, the optimization problem (16) can be recast as:

f̂ = argmin
f∈H̃k

1

σ2

l∑
i=1

(p(hi)− f(hi))
2 + ‖f‖2H̃k

(17)

According to the Representer theorem, the target function mini-
mizing (17), can be written as a linear combination of the kernel
functions, only in the set of the labelled samples, i.e.: f̂(ht) =∑l

i=1 aik̃(hi,ht). Thus, the optimization (17) is reduced to es-
timating the interpolation weights {ai}, by substituting this form in
(17), and differentiating with respect to a = [a1, ..., al]

T . Following
this computation, we receive that the interpolation weights are given

by: a∗ =
(
K̃LL + σ2Il

)−1

pL, where (K̃LL)ij = k̃(hi,hj).
Thus, the estimated value of the target function f at any point
ht ∈M, is given by (equivalent to (15)):

f̂(ht) = K̃T
Lt

(
K̃LL + σ2Il

)−1

pL (18)

where K̃Lt = [k̃(h1,ht), . . . , k̃(hn,ht)]
T .

To conclude, both the Bayesian approach and the regularized
optimization problem defined in an RKHS give rise to the same es-
timators, when the same kernel function serves as the covariance
function of the Gaussian process and as the reproducing kernel of
H̃k, receptively. In both view points, the underlying structure of
the manifold is taken into consideration by using a manifold-based
kernel function.

5. EXPERIMENTAL STUDY
In this section we examine the performance of the proposed estima-
tor (15) in recovering the azimuth angle of a source uttering speech
signals (consisting of both female and male speech). To simulate a
reverberant room of size 6× 6.2× 3, we use an efficient implemen-
tation [28] of the image method [29]. There are two microphones
located in the room, at [3, 3, 1]m and [3.2, 3, 1]m, respectively. The
source is at 2 m distance from the first microphone, on the same lat-
itude. Our goal is to estimate the azimuth angle of the source in the
range between 10◦ ÷ 60◦.

Each of the measured signals is generated by convolving the
clean speech signal with the AIR relating the source and the cor-
responding microphone and contaminating the filtered signal by a
white Gaussian noise (WGN). The training set comprises n = 400
pairs of measurements, among which only l = 6 are associated with
their corresponding positions, forming a grid of approximately 10◦

distance between adjacent labelled samples. For each location, we
use a unique speech signal, 3 s long sampled at fs = 16 kHz. The
CPSD and the PSD are estimated with Welch’s method with 0.128 s
windows and 75% overlap and are utilized for estimating the RTF
in (2) for 2048 frequency bins. The RTF vector consists ofD = 400
frequency bins corresponding to the frequency range 0-3kHz, in
which most of the speech components are concentrated. A Gaussian
kernel is set to the covariance function k of the Gaussian process.

For constructing the graph Laplacian M we use a truncated Gaus-
sian kernel, i.e., with non-zeros entries for the 12 nearest-neighbours
of each sample. The performance is examined over a set of q = 120
test samples, of unknown sources from unknown locations. To pre-
vent the results from being dependent on a specific reflection pattern
of a certain room section, we repeat the simulation and present the
average root mean squared error (RMSE) over 50 rotations of the
entire constellation, with respect to the first microphone.

We compare the performance of the two estimators of (10)
and (15) with standard and manifold-based kernels, respectively.
For comparison, we also apply the classical generalized cross-
correlation phase transformation (GCC-PHAT) algorithm [6]. Two
scenarios are investigated: different reverberation levels (signal to
noise ratio (SNR) fixed to 20 dB) and different noise levels (T60

fixed to 300 ms). Note that in each scenario, we choose moderate
fixed values for T60 and SNR, in order to isolate the two disturb-
ing factors, namely, noise and reverberation. The RMSE of all three
methods in both scenarios, is depicted in Fig. 2.

(a) (b)

Fig. 2: The RMSE (a) for differnet reverberation times, and (b) for
differnet noise levels. (σ2 = 0.005, γM = 20)

We observe that the GCC algorithm performs well in moderate
conditions, but exhibits a significant performance deterioration as
reverberation or noise level increases. In adverse conditions the cor-
relation between the measured signals is distorted, hence, the peak
corresponding to the direct path is usually misidentified. In contrast,
the training based algorithms are shown to be much more robust to
the presence of noise and reverberation. This type of approaches
takes advantage of the prior information implied by the training set
to compensate for the information loss in adverse conditions. It
can also be observed that the error is significantly reduced by us-
ing the manifold-based kernel compared to the standard kernel. The
manifold-based kernel is tailored to the underlying structure of the
RTF samples and is hence more appropriate for estimating the target
function which maps each RTF to its corresponding position.

6. CONCLUSIONS

A novel semi-supervised Bayesian approach was derived for the
source localization problem. Both labelled and unlabelled sam-
ples are utilized for representing the geometric structure of the RTF
samples. We proposed a manifold-based prior, associated with a
unique manifold-based kernel, which reflects the correspondence of
the target function to the structure of the manifold. The resulting
Bayesian estimator was shown to be robust to noise and reverbera-
tion. In addition, we have shown the equivalence between the pro-
posed method and a manifold-regularized optimization in an RKHS,
when the reproducing kernel coincident with the covariance func-
tion of the Gaussian process. The new Bayesian formulation moti-
vates further examination of the appropriate statistical assumptions,
as well as of possible extensions, such as tracking moving sources.

6338



7. REFERENCES

[1] P. Stoica and K. C. Sharman, “Maximum likelihood meth-
ods for direction-of-arrival estimation,” IEEE Transactions on
Acoustics, Speech and Signal Processing,, vol. 38, no. 7, pp.
1132–1143, 1990.

[2] J. C. Chen, R. E. Hudson, and K. Yao, “Maximum-likelihood
source localization and unknown sensor location estimation for
wideband signals in the near-field,” IEEE Transactions on Sig-
nal Processing, vol. 50, no. 8, pp. 1843–1854, 2002.

[3] Y. Rui and D. Florencio, “Time delay estimation in the pres-
ence of correlated noise and reverberation,” in IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 2, 2004, pp. ii–133.

[4] C. Zhang, Z. Zhang, and D. Florêncio, “Maximum likeli-
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