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ABSTRACT
This paper presents an eigenvector clustering approach for estimat-
ing the direction of arrival (DOA) of multiple speech signals using
a microphone array. Existing clustering approaches usually only use
low frequencies to avoid spatial aliasing. In this study, we propose
a probabilistic eigenvector clustering approach to use all frequen-
cies. In our work, time-frequency (TF) bins dominated by only one
source are first detected using a combination of noise-floor track-
ing, onset detection and coherence test. For each selected TF bin,
the largest eigenvector of its spatial covariance matrix is extracted
for clustering. A mixture density model is introduced to model the
distribution of the eigenvectors, where each component distribution
corresponds to one source and is parameterized by the source DOA.
To use eigenvectors of all frequencies, the steering vectors of all fre-
quencies of the sources are used in the distribution function. The
DOAs of the sources can be estimated by maximizing the likelihood
of the eigenvectors using an expectation-maximization (EM) algo-
rithm. Simulation and experimental results show that the proposed
approach significantly improves the root-mean-square error (RMSE)
for DOA estimation of multiple speech sources compared to the MU-
SIC algorithm implemented on the single-source dominated TF bins
and our previous clustering approach.

Index Terms— microphone arrays, direction of arrival, expectation-
maximization, spatial covariance, eigenvector clustering.

1. INTRODUCTION

Direction of arrival (DOA) estimation of multiple speech sources
using microphone arrays in noisy and reverberant environments has
wide range of applications in areas such as distant automatic speech
recognition [1, 2, 3, 4], teleconference systems [5], automatic cam-
era steering [6], and hearing aids [7]. However, the performance of
DOA estimation is greatly affected by the number of sources, room
reverberation, background noises, and the configurations of micro-
phone arrays. Reliable DOA estimation in such varying conditions
for various microphone array setups is highly demanded.

When the number of sources is smaller than the number of sen-
sors, the most widely used approaches for DOA estimation are sub-
space methods such as the multiple signal classification (MUSIC)
[8], and its variants [9]. However, the performance of MUSIC drops
significantly for large number of sources, high background noise
level, or high reverberation level. When the number of sources is
equal to or greater than the number of sensors, the DOA estimation

has been addressed using the subspace approach [9, 10], the model-
based approach [11, 12, 13], and the clustering approach [14, 15,
16, 17]. An example of model-based approach is the MESSL [12]
for two-microphone array. In MESSL, probability distribution of in-
teraural phase difference and interaural level difference are defined
for each source and the estimation of the distribution parameters and
assignment of time-frequency (TF) bins to sources can be solved by
using an expectation-maximization (EM) algorithm iteratively. Al-
though clustering methods [14, 16] can be applied to any array con-
figurations, they require a strong assumption on the source signals
that each TF bin is generated by only one source. Several methods
have been used to select single-source dominant TF bins, such as
the coherence test in [17] that selects TF bins with low-rank covari-
ance matrices and the combination scheme in [15] which is found to
be robust for multi-source DOA estimation in noisy and reverberant
environments. A major limitation of the clustering methods is that
they require a frequency normalization process to perform clustering
across different frequencies. The normalization limits the frequency
range used for the DOA estimation due to spatial aliasing. In order
to use high frequencies, small aperture arrays have to be configured.

In this study, we propose an iterative eigenvector clustering ap-
proach for multi-source DOA estimation on the full frequency range
without any constraint on the array configurations. The number of
sources is assumed to be known. We first robustly identify single-
source dominated TF bins based on TF bin selection scheme in [15].
We then obtain the largest eigenvectors of the covariance matrices
corresponding to these TF bins. A mixture density function is used
to model the eigenvectors and parameterized by source DOAs. To
use eigenvectors in all frequencies, the steering vectors of sources
in all frequencies are used in the model. As a result, the estimation
of source DOAs becomes a density estimation problem and an EM
algorithm is used to find the solution.

2. PROBLEM FORMULATION

Let us consider K far-field speech sources sk(t) (k = 1, 2, ...,K)
observed by an array of M microphones in a noisy and reverberant
environment. The received signals can be modeled as:

xm(t) =

K∑
k=1

αsk(t−τθk,m)+

K∑
k=1

sk(t)⊗hm(t, θk)+vm(t), (1)

where m = 1, 2, ...,M is the microphone index; α is the propaga-
tion energy decay factor; τθk,m is the time of arrival from the kth

6330978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



source location to the mth microphone location; θk is the DOA of
source sk(t); ⊗ denotes the convolution operation; hm(t, θk) repre-
sents the impulse response of reverberation from source k to micro-
phone m; vm(t) is the ambient noise.

In the short-time Fourier transform (STFT) domain, the model
(1) can be rewritten as:

Xm(n, ω) =

K∑
k=1

αSk(n, ω)e−jωτθk,m

+

K∑
k=1

Sk(n, ω)Hm(ω, θk) + Vm(n, ω), (2)

where n ∈ [1, N ] is the time frame index; ω ∈ [0,Ω− 1] is the fre-
quency bin index; Xm(n, ω), Sk(n, ω), Vm(n, ω) are the frequency
domain signals of xm(t), sk(t), and vm(t), respectively;Hm(ω, θk)
is the STFT transformed hm(t, θk).

By stacking Xm(n, ω) for m = 1, ...,M , we can rewrite Equa-
tion (2) into a vector form as:

x(n, ω) =

K∑
k=1

Sk(n, ω)[e(ω, θk) + h(ω, θk)] + v(n, ω), (3)

where e(ω, θk) = [αe−jωτθk,1 , ..., αe−jωτθk,M ]T is the steering
vector of the array pointing to the DOA θk, and the normalized vec-
tor of e(ω, θk) by a reference channel is usually used. The vector
h(ω, θk) is the reverberation vector from the DOA θk to the array.
Our task is to estimate the DOAs of θk (k = 1, 2, ...,K) from the
microphone signals (3).

3. PROPOSED EIGENVECTOR CLUSTERING APPROACH

In this section, we first describe the scheme for TF bin selection, and
then the extraction of the eigenvectors of the covariance matrices of
the selected TF bins. We then present a statistical framework for
clustering the extracted eigenvectors. A generative model for the
eigenvectors is introduced, and an expectation maximization (EM)
algorithm is proposed to iteratively cluster the eigenvectors into a
preseted number of sources.

3.1. Time-Frequency Bin Selection

When the signals are sufficiently sparse, the studies in [14, 16] as-
sume there is one single source at each TF bin. For speech sig-
nals, this assumption is too strong as there can be many overlapped
sources at some TF bins due to multiple speech sources and rever-
beration as shown in the signal model (3). Moreover, some TF bins
may contain only noise. Thus, it is favorable to select the single
source dominant TF bins for robust DOA estimation. In this study,
we apply the TF-bin selection scheme described as follows. First,
a noise-floor tracking algorithm is used to eliminate noise-only TF
bins; then an onset detection algorithm is used to detect the direct-
path TF bins; after that the coherence test in [17] is applied to the
sample covariance matrix to identify low rank TF bins. The selected
TF bins from this scheme are considered as single-source dominant
TF bins. The detail of this scheme is presented in [15].

3.2. Eigenvector Extraction

The study in [16] clusters directly a frequency-normalized version of
the TF bin x(n, ω), which cannot eliminate the effects of the noise

components embedded in the TF bins. We consider only the single-
source dominant TF bins, x(n, ω), selected by the above scheme,
and compute the sample covariance matrix of this TF bin from 2C+
1 adjacent time-blocks as follows:

R̃(n, ω) =
1

2C + 1

n+C∑
c=n−C

x(c, ω)xH(c, ω). (4)

As there is only one dominant source sk (k ∈ 1, 2, ...,K) which
is from the direct path and above noise level, the above covariance
matrix can be approximated as:

R̃(n, ω) ≈ σ2
k(n, ω)e(ω, θk)eH(ω, θk) + σ2

V (n, ω)I, (5)

where σ2
k(n, ω) and σ2

V (n, ω) denote the sample averaged power
spectra of sk and ambient noise, respectively. The noise is assumed
to be identically and independently distributed. There is no reverber-
ation term in (5) as only direct path TF bins are selected.

Taking eigendecomposition of R̃(n, ω), the largest eigenvec-
tor q(n, ω) of R̃(n, ω) is obtained, which is known as the signal
space and is highly correlated with the steering vector e(ω, θk).
We propose to cluster these eigenvectors instead of the frequency-
normalized phase of the eigenvectors in [15]. The advantage of the
eigenvector clustering is that it allows the full use of the signal fre-
quency range and weighted contribution of each eigenvector. Next,
we present an EM-based eigenvector clustering approach.

3.3. Generative Model

The task is to cluster the eigenvectors of the selected TF bins into K
clusters and find the DOAs of the clusters. In the following, we use
qnω as a short-form of q(n, ω) for ease of presentation. Based on
the graphical model representation, a generative model of the eigen-
vectors of TF bins is illustrated in Fig. 1. For each selected TF bin,
we introduce a latent variable znω that specifies which source gen-
erates the TF bin. znω is aK dimensional vector where only the kth

element znωk is 1 and all other elements are 0 if the TF bin is gener-
ated by the kth source. The generative process works as follows. For
the eigenvector located at time n and frequency ω, we first sample
znω according to the discrete probability distribution function:

p(znωk = 1) = πk, k ∈ [1,K],

K∑
k=1

πk = 1. (6)

where πk is the prior probability of source k. Suppose the sampled
value is znωj = 1 which specifies the jth source generates the TF
bin, we then sample qnω from the probability distribution associated
with the jth source which is defined as:

p(wnω,qnω|znωj = 1; θj) =
exp(βwnω|qHnωejω|)

E(β, θj)
(7)

where | · | denotes the magnitude of a complex number and ·H de-
notes Hermitian transpose. ejω is the M × 1 steering vector of the
source j at frequency ω and a function of both frequency and the
source DOA θj . As qnω is estimated from distorted signals in prac-
tice, we also introduce a positive scalar variable wnω that describes
the reliability of the eigenvector. In our implementation, wnω is the
ratio between the largest eigenvalue and the average of the rest eigen-
values. The denominator E(β, θj) is defined as

E(β, θj) =

∫
qnω,wnω,ω

exp(βwnω|qHnωejω|)dqnωdwnωdω

(8)
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Fig. 1. Graphical model for the proposed eigenvector clustering

The exponential function in (7) makes p(wnω,qnω|znωj = 1; θj) ≥
0 for all possible value of qnω and wnω , and the use of denomina-
tor E(β, θj) makes the distribution function integrates to 1. Hence,
p(wnω,qnω|znωj = 1; θj) is a valid probability density function
(PDF). β is a scalar variable to control the spread of the PDF.

The PDF in (7) relies on the term |qHnωejω| which reaches its
maximum value of 1 if qnω = µejω with a scaling factor µ, which
means that the eigenvector perfectly matches the source steering vec-
tor. The term also equals to its minimum value of 0 if the two vec-
tors are orthogonal. Hence, the term |qHnωejω| is a good measure of
the similarity between the eigenvector and the source j. A higher
similarity will produce a higher probability of the eigenvector being
generated by the source.

The integration in (8) integrates over all possible value of wnω ,
qnω , and ω, so it is intractable in practice. We make an assump-
tion that E(β, θj) = E(β), so it does not depend on the source
DOAs. It will be shown that it is not necessary to compute E(β)
in the eigenvector clustering method, which significantly simplifies
the complexity of the clustering method.

Given (6) and (7), we can write the PDF of the observed eigen-
vectors and reliablity variables as a mixture density function:

p(wnω,qnω; Θ) =

K∑
k=1

p(znωk = 1)p(wnω,qnω|znωk = 1; θk)

=

K∑
k=1

πk
exp(βwnω|qHnωekω|)

E(β)
. (9)

where Θ is the set of all source DOAs.

3.4. EM Algorithm for Eigenvector Clustering

The source DOAs can be estimated by maximizing the likelihood of
the observed data in (9), which include both the eigenvectors and
their reliability variables. Due to the latent variables znω which are
not directly observed, there is no closed form solution to the prob-
lem. Hence, we propose an EM-based iterative algorithm. In the ex-
pectation (E) step, we compute the posterior probabilities of source k
for each eigenvector observation using the existing estimated DOAs.
By the Bayesian theorem, we have

p(znωk = 1|wnω,qnω; Θ′) =
πk exp(βwnω|qHnωekω|)∑K
j=1 πj exp(βwnω|qHnωejω|)

(10)

where Θ′ is the set of source DOAs estimated from the previous
iteration. In the first iteration of the EM algorithm, Θ′ are randomly
sampled in the range [0,359].

At the maximization (M) step, we find a new estimation of the
source DOAs by maximizing the EM auxiliary function

θ̂k = arg max
θk∈[0,359]

Q(θk; Θ′), k ∈ [1,K] (11)

Q(θk; Θ′) =
∑

{n,ω}∈Ψ

γnωk log p(wnω,qnω|znωk = 1; θk)

=
∑

{n,ω}∈Ψ

γnωk log
exp(βwnω|qHnωekω|)

E(β)
. (12)

where Ψ is the set that contains the time-frequency pairs of the se-
lected TF bins and γnωk = p(znωk = 1|wnω,qnω; Θ′) is the pos-
terior probability computed in the E step. We only allow the source
DOAs to take integer values as real applications usually do not re-
quire higher resolution. As E(β) does not depend on source DOA,
we can remove it form the optimization problem:

θ̂k = arg max
θk∈[0,359]

∑
{n,ω}∈Ψ

γnωkβwnω|qHnωekω|) (13)

The optimal DOA can be found by a grid search, i.e. computing the
term in (13) for all the 360 possible values of θk and set θ̂k to the
one producing the highest auxiliary function value.

In practical implementation, we reduce the computational com-
plexity of the proposed clustering algorithm by setting γnωk to 1 for
the source of the highest probability and 0 for the rest. This reduces
by K times the computation in (13), which is the most expensive
part of the clustering algorithm. Note that β has no effect in the
simplified algorithm.

3.5. Discussion on Frequency Range and Spatial Aliasing

One advantage of the proposed method is that it is able to use eigen-
vectors from TF bins of all frequencies. This is due to the fact that
the steering vector and the eigenvector of the same frequency are
used in computing the probability in (7). For each source cluster, the
steering vectors of all frequencies for the cluster source DOA collec-
tively act as the template of the cluster. This is different from other
clustering methods such as k-means where only one template is used
per cluster.

The posterior probability p(znωk = 1|wnω,qnω; Θ′) will have
multiple peaks at high frequencies due to spatial aliasing. Hence,
there is ambiguity in determining the source DOA if we only rely on
high frequencies. However, this has limited effect on the proposed
DOA estimation method as the DOA of a source is estimated from
TF bins in all frequencies that “belong” to the source. Despite the
spatial aliasing, the higher frequency TF bins still contain informa-
tion that is useful for DOA estimation.

4. EXPERIMENTS

The proposed eigenvector clustering approach is evaluated and com-
pared to the MUSIC subspace approach [8] and the clustering ap-
proach [15] for 2-dimensional DOA estimation on both simulated
and real data. An 8-channel circular array with a diameter of 20cm
is used for the tests. For all the testing data, the sampling rate is
16 kHz; the FFT length is 512, and the overlap size is 256. The
performance of the tested approaches is evaluated using the RMSE.

For the simulated data, the image method [18] is used to generate
the room impulse responses (RIRs) from specified source positions
to the array positions. The array outputs are synthesized by convolv-
ing clean speech signals from the WSJCAM0 corpus [19] with the
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Fig. 2. Illustration of the normalized MUSIC spatial spectra com-
puted from all selected TF bins (left figure) and clustered TF bins.
The reverberation time is 1.0s and SNR=19.8dB.
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Fig. 3. Illustration of the normalized values of auxiliary function us-
ing the proposed eigenvector clustering approach for six real sources
(pantry room, T60=0.47s, above figure) and for eight simulated
sources (T60=1s, SNR=20dB, below figure).

generated RIRs. The additive noises from the REVERB Challenge
2014 corpus [20] are added to the array outputs. Different array out-
puts are randomly mixed to create the scenarios of multiple speech
sources from different DOAs where the DOAs are separated by at
least 5◦. The audio file lengths are from 3s to 5s long. The reverber-
ation times are 0.3s for small room, 0.6s for medium room, and 1.0s
for large room. The distances between the sources and the array are
1.5m for small room, and 2m for medium and large rooms.

For the real data records, 8 GRAS40 PH microphones are con-
figured for the real 8-channel circular array. NI cDAQ-9139 is
used for audio capturing and analog-to-digital conversion (ADC).
The recording is made in three different environments: small meet-
ing room (4m×3m×2.5m), pantry room (6m×5m×2.5m), and lift
lobby (8m×4m×3m). The measured reverberation times of the
three environments are 0.34s, 0.47s, and 1.07s, respectively. We use
one male speaker and one female speaker for the recording. The
DOAs recorded for the male speaker are 0◦, 45◦ and 90◦ at each
environment, and the DOAs recorded for the female speaker are
135◦, 180◦ and 225◦ at each environment. Different array outputs
are mixed to create the scenarios of multiple speech sources. The
audio files are cut to 6s long for each testing case.

4.1. Results

To illustrate the effectiveness of the proposed clustering approach,
we plot the normalized MUSIC spatial spectra of two close sources
(θ1 = 65◦, θ2 = 72◦) in Fig. 2. When the MUSIC spatial spectrum

Table 1. The RMSE (in degrees) results for the simulated data.
Room Method SNR=20dB SNR=10dB SNR=0dB 

Small 

MUSIC 15.51 18.30 23.76 

Algorithm[14] 14.26 18.41 20.50 

Proposed 2.78 2.84 6.75 

Medium 

MUSIC 13.67 9.41 12.37 

Algorithm[14] 18.19 10.97 14.12 

Proposed 3.76 5.15 3.07 

Large 

MUSIC 7.87 4.99 14.94 

Algorithm[14] 11.70 10.10 11.49 

Proposed 1.17 2.04 9.47 

Testing Environment 

small pantry lift 

Method 

MUSIC 28.96 25.62 68.94 

Algorithm[14] 57.02 55.70 76.78 

Proposed 3.64 0.96 14.08 

Table 2. The RMSE (in degrees) results for the real data.

Room Method SNR=20dB SNR=10dB SNR=0dB 

Small 
 

MUSIC 15.51 18.30 23.76 

Algorithm[14] 14.26 18.41 20.50 

Proposed 2.78 2.84 6.75 

Medium 
 

MUSIC 13.67 9.41 12.37 

Algorithm[14] 18.19 10.97 14.12 

Proposed 3.76 5.15 3.07 

Large 
 

MUSIC 7.87 4.99 14.94 

Algorithm[14] 11.70 10.10 11.49 

Proposed 1.17 2.04 9.47 

 

 

  

Testing Environment 

small pantry lift 

Method 
 

MUSIC 33.43 28.7 62.66 

Algorithm[14] 40.74 42.92 70.02 

Proposed 1.7 0.92 13.02 

 

is computed from all selected TF bins, there is only one peak, there-
fore MUSIC fails to estimate the two directions. The MUSIC spatial
spectrum computed from clustered TF bins obtained by the proposed
clustering method shows two peaks located near the true source di-
rections. This demonstrates the ability of the proposed method in
resolving sources with close DOAs.

Fig. 3 illustrates the obtained normalized values of auxiliary
function (13) for 6 real sources at {θ1, ..., θ6} = {2◦, 47◦, 92◦, 137◦,
182◦, 226◦} and 8 simulated sources at {θ1, ..., θ8} = {13◦, 50◦,
74◦, 118◦, 186◦, 254◦, 306◦, 349◦}. The peaks of the auxiliary
functions match well the source DOAs.

Table 1 shows the RMSE results for the simulated data with two
mixed speech sources. It is observed that the proposed method out-
performs other methods in all test conditions. All the RMSEs of the
proposed approach are less than 10◦ while the RMSEs of MUSIC
and the algorithm [15] are greater than 10◦ in general.

Table 2 shows the RMSE results of the real data with two mixed
speech sources. The DOA ground truth was obtained using MU-
SIC for each source separately. It is observed that the proposed ap-
proach achieves much smaller RMSEs than MUSIC and the algo-
rithm [15]. The results confirm that the clustering on full frequency
range has significant advantage over the clustering on low-frequency
range where the algorithm [15] uses 2.24kHz. It is seen that the RM-
SEs for the data of the small room are greater than the RMSEs for
the data of the pantry room. It might be because there were strong
reflections from the tables close to the microphone array during data
collection in the small room. All algorithms produce higher RMSEs
for the more reverberant lift lobby environment.

5. CONCLUSIONS

We have presented an eigenvector clustering approach for DOA es-
timation of multiple speech sources based on a probabilistic model
and EM algorithm. The proposed model allows the full use of sig-
nal frequencies despite spatial aliasing in high frequencies. The ap-
proach can be applied to different sizes and configurations of micro-
phone arrays. Experimental results using a 8-channel circular array
show significantly reduced RMSEs of the proposed approach com-
pared to the MUSIC algorithm and the clustering approach that uses
only lower frequency range. The proposed approach is also shown to
be capable for estimating DOAs of large number of speech sources.
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