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ABSTRACT
Partial correlations (PCs) of functional magnetic resonance
imaging (fMRI) time series play a principal role in revealing
connectivity of brain networks. To explore nonlinear behavior
of the blood-oxygen-level dependent signal, the present work
postulates a kernel-based nonlinear connectivity model based
on which it obtains topology revealing PCs. Instead of relying
on a single predefined kernel, a data-driven approach is advo-
cated to learn the combination of multiple kernel functions
that optimizes the data fit. Synthetically generated data based
on both a dynamic causal and a linear model are used to val-
idate the proposed approach in resting-state fMRI scenarios,
highlighting the gains in edge detection performance when
compared with the popular linear PC method. Tests on real
fMRI data demonstrate that connectivity patterns revealed by
linear and nonlinear models are different.

Index Terms— fMRI, partial correlation, kernel-based
regression, multiple kernel learning.

1. INTRODUCTION

Functional (f)MRI is a neuroimaging procedure for studying
brain activity by detecting associated changes in blood oxy-
genation [10]. Event-related fMRI studies have contributed
to our understanding of functional specialization. Although
fMRI data analyses focused initially on the role of different
brain regions, typically through univariate voxel-wise mod-
els of brain activation, much of the recent fMRI literature
has focused on efforts to model and characterize the brain
as a network [25]. This research has been facilitated by the
permeation of network science methodologies to the study
of brain connectivity, revealing characteristics such as their
small-world structure, as well as the application of machine
learning approaches to brain science [20, 4].
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Typical steps taken in obtaining brain connectivity graphs
from a set of voxel timecourses include: (i) identifying a set
of nodes [which may for example correspond to anatomically
defined regions of interest (ROIs)]; (ii) assigning a representa-
tive timecourse per node; and (iii) inferring edges connecting
graph nodes [20]. The last step, which is the focus of this
work, typically involves the use of a functional connectivity
measure to model dependencies between nodes.

Functional connectivity measures include but are not lim-
ited to (partial) correlations [18], coherence, and generalized
synchronization [24]. As several studies suggest, the blood-
oxygen-level dependent (BOLD) response is a nonlinear
function of neuronal input signals [16]. Nonlinear connec-
tivity measures such as mutual information, or, nonlinear
variants of linear methods, such as kernel Granger causality
(KGC) [14, 17] may therefore be preferable in revealing brain
connectivity.

In PC-based identification of brain connectivity graphs,
node time series are used to estimate their inverse covariance
matrix by maximizing a likelihood criterion regularized with
the elastic net [22], or, the `1-norm [24, 13] to promote sparse
graphs. Entries of the estimated inverse covariance matrix
correspond to the wanted PC coefficients.

The present contribution adopts a kernel-based non-
linear regression approach to estimate the PC coefficients.
The premise is that performing regression with nonlinearly
mapped versions of the time-series will offer improved fit of
the real data relative to linear models. Intuitively, the pro-
posed approach is motivated by the fact that linear models
may be unable to sufficiently capture dependencies. In ad-
dition, the problem of choosing the kernel which is critical
to the success of any kernel-based method is tackled using
a data-driven methodology, namely multi-kernel learning,
which learns a combination of kernels, taken from a prese-
lected dictionary of kernel functions, to optimally fit the data.
Finally, since PC yields weighted graphs, an edge inference
procedure is also presented for identifying those edges which
produce a binary graph.

Kernel-based methods have been employed in different
fMRI tasks, including KGC and kernel canonical correlation
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analysis [8]. Multi-kernel learning techniques have also been
applied but in distinct contexts, namely for classification and
feature selection [3, 11], or, data fusion from heterogeneous
sources [26].

2. NONLINEAR CONNECTIVITY MODEL

Consider a set of nodes V each representing a collection of
voxels belonging to either anatomically defined or data-driven
regions [20]. Associated with each node ν ∈ V is a time se-
ries represented by a column vector xν := [xν [1] . . . xν [T ]]>

(> stands for transposition), which is a combination of the
BOLD fMRI time series of the voxels represented by this
node. Based on all {xν}ν∈V , the goal is to construct a graph G
in which: i) an edge is present only if there is a sufficient level
of “similarity” between the time series of the two incident
vertices; and, ii) graph edges are indicative of direct influence
between vertices rather than indirect influence through an in-
termediate node.

To this end, partial correlation will be used as a measure
of similarity between nodes since it is both intuitively appeal-
ing and also has well-documented merits in fMRI-based con-
nectivity studies [24]. To see how PC is indicative of direct
influence, in contrast to simple correlation, consider a sim-
ple cascade network νA → νB → νC of three nodes. All
three time series are correlated; hence, ordinary correlation
will also suggest a νAνC edge. However, if νB is regressed
out of νA and νC , the correlation between νA and νC disap-
pears, and so does the νAνC edge [24].

Consider data vectors xi,xj at nodes i, j ∈ V , and an es-
timate x̂i of xi based on {xk | k ∈ S}, where S ⊆ V\{i, j},
with |S| < |V|, |·| denoting set cardinality, and \ representing
set difference. Upon defining x̃i := xi − x̂i, the sample PC
of xi,xj with respect to {xk}k∈S is given by

ρ̂ij|S :=
(x̃i − ¯̃xi)

>(x̃j − ¯̃xj)

‖x̃i − ¯̃xi‖2‖ x̃j − ¯̃xj‖2
(1)

where ¯̃xi := [(1/T )
∑T
t=1 x̃i[t]]1, and 1 is the all-ones

vector. Notice that ρ̂ij|S = ρ̂ji|S , and let hereafter S :=
V\{i, j}. Inferring whether an edge is present or not between
i and j entails a hypothesis test, that relies on a statistic ex-
pressed in terms of ρ̂ij|S , as it will be demonstrated in Sec. 3.
But first, a novel nonlinear approach to finding x̂i will be
developed.

2.1. Kernel-based nonlinear predictors

Typically, x̂i is a linear function of {xk | k ∈ S}. However,
broadening the class x̂i belongs to include nonlinear estima-
tors will result in more general connectivity models. To ren-
der nonlinear estimators tractable, our approach here relies on
kernel-based regression.

Let indices {n1\ij , . . . , n|V |−2\ij} enumerate nodes in
S = V\{i, j}, and χ\ij [t] := [xn1\ij [t], . . . , xn|V |−2\ij [t]]

>

denote the snapshot of the whole network at time t, ex-
cluding the data observed at nodes i and j. A nonlinear
mapping is introduced via φ : R|V |−2 → H, that maps vec-
tors χ\ij [t] to elements of a (potentially infinite-dimensional)
Hilbert space H, equipped with inner product 〈·, ·〉 and norm
‖ · ‖H [23]. The tth entry of xi is modeled as xi[t] =
〈φ(χ\ij [t]),βi〉 + εi[t], where βi ∈ H and εi[t] captures
noise and modeling inaccuracies. Gathering all regressors
{φ(χ\ij [t])}Tt=1 into Φ\ij := [φ(χ\ij [1]), . . . ,φ(χ\ij [T ])],
and defining the operation Φ>\ijβi as the T × 1 vector whose
tth entry is 〈φ(χ\ij [t]),βi〉, the previous data generation
model reduces to the compact form: xi = Φ>\ijβi + εi.
Along the lines of ridge regression, the following infinite-
dimensional optimization task is formulated

β̂i := arg min
βi∈H

‖xi −Φ>\ijβi‖
2
2 + λ‖βi‖2H

=
(
Φ\ijΦ

>
\ij + λIH

)−1

Φ\ijxi

=
1

λ
[IH −Φ\ij(λIT + Φ>\ijΦ\ij)

−1Φ>\ij ]Φ\ijxi (2)

where Φ\ijxi :=
∑T
t=1 xi[t]φ(χ\ij [t]); product Φ>\ijΦ\ij

denotes the composition of Φ>\ij with Φ\ij ; IH stands for
the identity operator on H; and the last equality relies on the
matrix inversion lemma. The (t, τ)th entry of the T×T Gram
matrix Φ>\ijΦ\ij is given by 〈φ(χ\ij [t]),φ(χ\ij [τ ])〉.

Whenever H is chosen to be a reproducing kernel Hilbert
space (RKHS), there exists a unique reproducing kernel κ
such that 〈φ(χ\ij [t]),φ(χ\ij [τ ])〉 = κ(χ\ij [t],χ\ij [τ ])
[23]. This way, simple evaluations of κ at the data-vectors
{χ\ij [t]}Tt=1 generate the entries of the kernel matrix K\ij =

Φ>\ijΦ\ij . Popular examples of kernel functions κ, which
define uniquely their associated RKHSsH, include the linear
kernel κl(χ1,χ2) := χ>1 χ2, and the Gaussian or radial basis
function (RBF) [23]

κ
(σ)
RBF(χ1,χ2) := e

−‖χ1−χ2‖
2
2

2σ2 (3)

where σ2 denotes the variance of the RBF (here, dim(H) =
∞). For the linear κl, φ becomes the identity mapping, and
(2) boils down to the standard (linear) ridge regression task.

Inserting K\ij into (2), the estimate x̂i = Φ>\ijβ̂i is

x̂i =
Φ>\ij

λ

[
IH −Φ\ij

(
λIT + K\ij

)−1
Φ>\ij

]
Φ\ijxi

= K\ij(K\ij + λIT )−1xi . (4)

So long as K\ij is available, (4) offers a closed-form expres-
sion of the kernel-based estimator x̂i, which renders it com-
putable via matrix operations even when dim(H) =∞.

2.2. Multi-kernel based learning

Choosing a “good” kernel is an application-dependent art. A
way to facilitate this selection is multi-kernel learning (MKL)
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that deciphers κ from the data [7].
To this end, consider the following reformulation of (2)

min
βi∈H

T∑
t=1

ξ2[t] + λ‖βi‖2H

s.to
{
ξ[t] = xi[t]− 〈φ(χ\ij [t]),βi〉

}T
t=1

. (5)

Letting α := [α[1], . . . , α[T ]]> denote the T × 1 vector of
Lagrange multipliers, the dual task of the primal convex pro-
gram in (5) turns out to be1

max
α∈RT

−λα>α + 2α>xi −α>K\ijα . (6)

There are several ways of combining multiple kernels [7].
Here, given a number P of user-defined reproducing kernel
functions {κp}Pp=1, a new kernel κ is obtained via the linear
combination κ :=

∑P
p=1 θpκp, where θ := [θ1, . . . , θP ]> �

0. Since θ � 0, then κ is guaranteed to be reproducing [23].
With regards to kernel matrices, the previous combination
translates to K\ij =

∑P
p=1 θpKp\ij . Moreover, to avoid un-

bounded solutions, θ is forced to satisfy the sphere constraint
‖θ − θ0‖2 ≤ Λ, for a pre-defined Λ > 0 and θ0 ∈ RP . Sum-
marizing, the sought weights belong to Θ := {θ ∈ RP : θ �
0, ‖θ − θ0‖2 ≤ Λ}. Plugging now κ in (6), and minimizing
the resulting cost w.r.t. θ, yields the following min-max task

min
θ∈Θ

max
α∈RT

−λα>α + 2α>xi −
P∑
p=1

θpα
>Kp\ijα

= max
α∈RT

−λα>α + 2α>xi + min
θ∈Θ
−θ>v (7)

where the min-max theorem [9, §4.3] was used to inter-
change minθ∈Θ with maxα∈RT , and v := [v1, . . . , vP ]>

where vp := α>Kp\ijα. For an arbitrarily fixed α, appli-
cation of the Karush-Kuhn-Tucker (KKT) conditions on the
convex program minθ∈Θ−θ>v yields the optimal solution
θ?(α) := θ0 + Λv(α)/‖v(α)‖2. Finally, plugging θ? into
(7) and solving the resultant maximization task w.r.t. α yields
the optimal solution α?(θ?) := [K\ij(θ?) + λIT ]−1xi.
Along the lines of [5], the chain α 7→ θ?(α) 7→ α?[θ?(α)]
leads to the iterative Algorithm 1 for solving (7). As output
of Alg. 1, the resultant estimates {x̂i, x̂j}i,j∈V are plugged
into (1) to obtain the wanted PC coefficients ρ̂ij|S .

3. EDGE INFERENCE

With E := {(i, j) ∈ V × V | ρij|S 6= 0}, the hypothesis
testing problem for the potential edge (i, j) can be stated as

H0 : ρij|S = 0; H1 : ρij|S 6= 0 .

Edge inference is performed using as test statistic the Fisher-
z transformation zij|S := (1/2) ln[(1 + ρ̂ij|S)/(1 − ρ̂ij|S)]

1Detailed derivations can be found in the journal version [12].

Algorithm 1 Multi-kernel learning
Require: θ0, λ, Λ, η, {κp}Pp=1.

1: for (i, j) ∈ V × V , (i < j), do
2: for l = 1, 2 do
3: K0\ij :=

∑P
p=1[θ0]pKp\ij .

4: α̂i := (K0\ij + λIT )−1xi.
5: while ‖α̂i −α‖2 ≥ ε do
6: α := α̂i.
7: v := [α>K1\ijα, . . . ,α

>KP\ijα]>.
8: θ := θ0 + Λv/‖v‖2.
9: K

(i)
\ij :=

∑P
p=1 θpKp\ij .

10: α̂i := ηα + (1− η)(K
(i)
\ij + λIT )−1xi.

11: end while
12: i↔ j.
13: end for
14: x̂i := K

(i)
\ijα̂i.

15: x̂j := K
(j)
\ijα̂j .

16: end for

of the estimated PC coefficients ρ̂ij|S ; see also [13]. It is
assumed that {xν [t]}Tt=1 are i.i.d normal across time with
xν [t] ∼ N (µν , σ

2
ν); and possibly correlated across nodes

with σνν′ := E{(xν [t] − µν)(xν′ [t
′] − µν′)}. Under this as-

sumption, it follows that asymptotically (as T → ∞) zij|S is
zero-mean normal with variance σ2

ij|S = 1/[T−(|V|−2)−3],
∀(i, j). Since the problem of multiple testing arises here, false
discovery rate (FDR) principles, and in particular the method
of [1], is utilized to keep FDR := E[FA/D] below a desired
threshold, where E denotes expectation, FA stands for false
alarms (rejecting H0 when it is in effect), and D denotes dis-
coveries (rejecting H0 regardless of it being true or not).

4. NUMERICAL TESTS

Synthetic fMRI datasets based on the dynamic causal model-
ing (DCM) fMRI forward model [6], which uses the nonlin-
ear balloon model [2], were generated in order to assess the
performance of the proposed method. The setup follows that
of [24]. First, vector time series z(t) := [z1(t), . . . , z|V|(t)]

>,
where zi(t) corresponds to node i, are generated based on the
DCM neural network model ż(t) = δAz(t) + u(t), where A
stands for the network matrix whose entries model the “first-
order connectivity among regions” [6], δ is a coefficient that
adjusts neural lags (equal to 20 in the following tests), and
u(t) := [u1(t), . . . , u|V|(t)]

>, where ui(t) denotes the input
signal at node i. Each zi(t) is then fed into the nonlinear
balloon model [2] for vascular dynamics. The model is simu-
lated at a 5ms timescale, and each time series is sampled with
TR=3s (sampling rate). As a result, the ith node time series
xi, consisting of T = 200 time points, is obtained.

Specifically, ui(t) = πi(t) + ni(t), where πi(t) denotes
a binary pulse train (20% average duty cycle) generated by
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a Markov chain, so as to simulate resting state fMRI data
[24], and ni(t) is white Gaussian noise of variance 10−2. A
30 × 30 upper triangular matrix A was generated as in [24],
with fixed diagonal elements Aii = −1 and randomly placed
100 non-zero entries drawn according to Aij ∼ U(0.25, 0.6),
where U(a, b) denotes the uniform distribution over [a, b].
The balloon model parameters {α, ρ, τ, V0} were obtained
from a fit of experimental BOLD signals obtained under
a 3T field to the model, as provided in [19], while {κ, γ}
were set according to the DCM priors [6]. A single linear
kernel and 19 Gaussian kernels of (3) were used, with vari-
ances {σ2

p}19
p=1 taken from the interval [10−6, 1]. Moreover,

θ0 := 1P , η := 0.5, and the regularization parameters λ,Λ
were chosen using k-fold cross-validation separately for each
pair of nodes. For each (i, j), two pairs {λ?i ,Λ?i }, {λ?j ,Λ?j}
were obtained, each corresponding to the value of (λ,Λ), in
the grid {0.1, 1, 10, 100} × {10, 50, 100}, that minimizes the
cross-validation error for nodes i and j, respectively.

A linear model was also used to generate synthetic data,
in order to compare the performance of the proposed method
with that of linear PC when the underlying data indeed ad-
hered to a linear model. In particular, time series were gener-
ated using a vector auto-regressive model: z[n+1] = Az[n]+
w[n], where w[n] ∼ N (0, I), along the lines of [21]. Matrix
A was generated using the procedure described previously,
except for its diagonal entries which were set to Aii = −0.1.
Each time step corresponds to 10ms and the resulting time
series of each node is first convolved with a canonical hemo-
dynamic response function (HRF), and then down-sampled to
TR=3s. HRF parameters were selected as in [15].

The performance of the proposed approach was compared
to that of linear PC on the DCM model through empirical re-
ceiver operating characteristic (ROC) curves, obtained using
|ρ̂ij|S | as a test statistic and gradually decreasing the thresh-
old. The improvement offered by the proposed method is ev-
ident in Fig. 1a. For example, correctly identifying 70% of
the nonzero entries of the ground truth matrix A results in 13
false alarms (FAs) for the proposed approach, as compared to
69 FAs for the PC method.

With regards to the linear model case, the proposed ap-
proach outperformed linear PC (see Fig. 1b) by a smaller mar-
gin than in the DCM case. Such results address concerns of
linear PC being superior whenever the underlying data are
linearly generated. As expected, there was also an increase in
the relative contribution of the linear kernel in this case.

Similar results, summarized in Table 1, were obtained in
both simulation setups by fixing a maximum FDR level and
using the procedure described in Sec. 3.

Tests were also performed on concatenated resting-state
portions from the StarPlus fMRI real dataset [27]. Fig. 2 plots
|ρ̂ij|S−ρ̂

(l)
ij|S |, where ρ̂(l)

ij|S denotes the linear PC coefficient of
xi and xj . It is evident that linear and nonlinear models give
rise to distinct values of PC coefficients. However, relative
merits cannot be assessed in lieu of a ground truth model,
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Fig. 1. ROC curves obtained on DCM and linearly-modeled
synthetics. The red curve corresponds to the proposed ap-
proach whilst the green one to linear PC.
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Fig. 2. 3D bar graph of |ρ̂ij|S − ρ̂
(l)
ij|S | obtained on the real

data described at the end of Sec. 4.

DCM Linear
TPR(%) FDR (%) TPR(%) FDR (%)

Proposed approach 65 10.96 45 16.67
Linear PC 49 25.76 37 22.92

Table 1. Testing the procedure of Sec. 3 for desired FDR
level of 0.15, both for nonlinear DCM and linear-model-based
synthetics. TPR denotes the true positive rate.

which also justifies the role of synthetic data.

5. CONCLUSIONS

In par with the nonlinear generation mechanism of fMRI data,
this work presented a novel kernel-based nonlinear connec-
tivity model to infer topology-revealing partial correlations
(PCs). A data-driven multi-kernel approach was introduced
to learn the model that fits the data optimally. An edge in-
ference procedure was also implemented to map the resultant
soft weighted edges to binary-valued ones. Tests on synthetic
data, both for linearly and nonlinearly generated data, high-
light the superior performance of the proposed method over
the popular linear PC alternative. On-going real data tests
complementing the preliminary ones here, will be included in
the final version and the upcoming journal version [12] of this
contribution.
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