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ABSTRACT

With developments in experimental connectomics producing
wiring diagrams of many neuronal networks, there is emerg-
ing interest in theories to understand the relationship between
structure and function. Efficiency of information flow in net-
works has been proposed as a key functional in characterizing
cognition, and we have previously shown that information-
theoretic limits on information flow are predictive of behav-
ioral speed in the nematode Caenorhabditis elegans. In par-
ticular, we defined and computed a notion called effective bot-
tleneck capacity that emerged from a pipelining model of in-
formation flow. It was unclear, however, whether the particu-
lar C. elegans connectome had unique capacity properties or
whether similar properties would hold for random networks.
Here, we determine the effective bottleneck capacity for sev-
eral random graph ensembles to understand the range of pos-
sible variation and compare to the C. elegans network.

Index Terms— connectomics, graph signal processing,
information flow, random graphs

1. INTRODUCTION

With recent developments in experimental connectomics pro-
ducing complete anatomical wiring diagrams of brain regions
or whole organisms at the individual synapse level [1-4],
there is emerging interest in theoretical methods to under-
stand relationships between structure and function in the
brain. Indeed, this is the basic problem in connectomics.

One approach to analysis is discovery-oriented, where
one would simultaneously screen for several features of the
anatomical network that may be associated with cognitive,
behavioral, and psychiatric phenotype differences between
nervous systems, cf. [5]. That is, one would perform a
connectome-wide association study (CWAS). Such studies
can be done on an edge-by-edge basis over all edges in a
network [6], or for functional imaging data on a pixel-by-
pixel basis [7]. Statistical techniques for CWAS (controlling
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false discovery rate, etc.), however, have not been developed
to simultaneously screen for several interpretable network-
theoretic functionals. Backing away from such a discovery-
oriented approach, here we are in a sense inspired by graph
signal processing [8,9] and use a hypothesis-driven approach
to study a particular network functional that may provide
insight into neural function.

Neural efficiency hypotheses of intelligence argue that in-
formation flows better in the nervous systems of bright indi-
viduals [10, 11]. Separately, we have previously argued that
information-theoretic capacity limits on information flow are
predictive of behavioral speed in the nematode Caenorhabdi-
tis elegans through a combination of theoretical development
[12] and connectome data analysis [2]. This hypothesis can
potentially be reexamined with detailed simulation [13, 14].

We specifically considered the bottleneck capacity of the
network [15, 16], a notion that emerges from a pipelining
model of information flow we defined [12]. Note that due
to the difference between the maximum capacity view of in-
formation flow [17, 18] and the widest path view of infor-
mation flow adopted herein, bottleneck capacity is related to
notions of graph diameter rather than notions of graph con-
ductance [19]. We computed the capacity of such “circuit-
switched” information flow for the C. elegans gap junction
network! and compared to experimental measurements of be-
havioral speed in the worm, finding concordance.

An alternate question we ask here is whether the bottle-
neck capacity of the C. elegans network is significantly differ-
ent from random graphs from ensembles that match other net-
work functionals. Is the network non-random [20] in allowing
behavior that is faster or slower than other networks? Note
that this is different from asking for the capacity of random
networks under the other notion of information flow [21,22].

This paper finds the bottleneck capacity for several ran-
dom graph ensembles. Our previous investigation showed
functional sub-circuits have certain optimality properties for
information flow [12], but now we find that the complete con-

1C. elegans has two kinds of synaptic connections: chemical synapses us-
ing neurotransmitters to pass information; and gap junctions where two neu-
rons are directly electrically connected; we focus on gap junctions. Synaptic
connection between two neurons may have more than one gap junction.
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nectome is much slower than graphs in related random ensem-
bles. This suggests that functional sub-circuits are a primary
organizational principle of the nervous system.

2. PIPELINING MODEL OF INFORMATION FLOW
AND BOTTLENECK CAPACITY

Let us think of a neuronal network as a communication net-
work where neurons are nodes and synapses are capacitated
links. Consider a network where information to be transmit-
ted from a source node to a destination node can be split into
pieces in time and sent in a pipelined fashion over (possibly)
several hops using as many time slots as needed. The infor-
mation, however, must go over a single route rather than being
split over several routes to be recombined by the destination.

In such a model, maximizing information flow requires
finding the single best route between the two nodes: the route
that minimizes the weight of the maximum-weight edge in the
route. In the context of the C. elegans gap junction network
this amounts to finding paths with bottlenecks (in terms of
inverse number of gap junctions) that are the largest. This can
be computed by taking paths in a maximum spanning tree
[16], though this may be computationally intensive.

Consider the following standard definitions of graph dis-
tance for weighted graphs.

Definition 1. Let G = (V, E) be a weighted graph. Then the
geodesic distance between nodes s,t € V is denoted d (s, t)
and is the number of edges connecting s and t in the path with
the smallest number of hops between them. If there is no path
connecting the two nodes, then dg(s,t) = oo.

Definition 2. Let G = (V, E) be a weighted graph. Then
the weighted distance between nodes s,t € V is denoted
dw (s, t) and is the total weight of edges connecting s and t in
the path with the smallest total weight between them. If there
is no path connecting the two nodes, then dyy (s, t) = oo.

If all edge weights are 1, then the weighted distance and
geodesic distance coincide.

An alternate notion of distance arises from the pipelining
model. We want a path between two nodes that has a small
number of hops such that the weight of the maximum-weight
edge is small. Then we measure path length weighted by this
bottleneck weight. Under this notion of distance, the space is
ultrametric rather than metric [23].

Definition 3. Let G = (V, E) be a weighted graph. Then
the bottleneck distance between nodes s,t € V is denoted
dp(s,t) and is the number of edges connecting s and t, scaled
by the weight of the maximum-weight edge, in the path with
the smallest total scaled weight between them. If there is no
path connecting the two nodes, then dy (s,t) = oc.

Proposition 1 ( [12]). If weights of all actual edges are 1 or
less, geodesic distance upper bounds the bottleneck distance:

dp(s,t) < dg(s,t).

Proposition 2 ( [12]). Weighted distance lower bounds the
bottleneck distance:

dB(S, t) Z dw(s, t).
Any of these distance functions define a diameter.

Definition 4. The graph diameter is

D = max d(s,t).
s,teV

We also define a notion of effective diameter where node
pairs that are outliers in the empirical distribution of distances
do not enter into the calculation. Recall that the quantile func-
tion corresponding to cumulative distribution function (cdf)

F(-)is
Q(p) = inf{z € R|p < F(z)} (M

for a probability value 0 < p < 1.

Definition 5. For a network of size n, let F(z) be the empir-
ical cdf of the distances of all (;‘) distinct node pairs. Then
the effective diameter is:

D, = Q(0.95). )

This definition is more stringent than other definitions of
effective diameter in the literature [24]. Of course, D, < D.
Moving forward, we use effective diameter rather than diame-
ter since it characterizes when most of the information would
have reached its destination. Thresholds other than 0.95 can
of course be easily defined.

The notion of bottleneck capacity that we is proportional
to the diameter under bottleneck distance. The constant of
proportionality is the Shannon capacity of a single gap junc-
tion, about 1000 bits/sec as derived in [12]. We omit this
constant in the sequel since we are concerned with structural
characterization.

We wish to study whether the bottleneck capacity of the
C. elegans gap junction network is more than, less than, or
similar to the bottleneck capacity of random graphs that have
certain other network functionals fixed.

3. MAIN RESULTS

The structural properties of the gap junction connections in
the C. elegans neuronal network have been described in de-
tail in prior work [2]; there it is shown to be a small-world
network due to large clustering coefficients. The somatic net-
work consists of a giant component with 248 neurons, two
small connected components, and several isolated neurons.
Within the giant component, the average geodesic distance
between two neurons is 4.52.

Here we bound the effective diameter of the giant com-
ponent of the gap junction network, with respect to the bot-
tleneck distance using the effective diameter with respect to
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geodesic and weighted distances. Figure 1 shows the survival
function of the empirical all-pairs geodesic distance and of
the empirical all-pairs weighted distance. As can be seen, the
effective diameter for weighted distance is about 6 and for
geodesic distance is about 7. Hence the effective diameter for
bottleneck distance is between 6 and 7.

To evaluate the nonrandomness of the bottleneck capac-
ity of the C. elegans network giant component, we compare
it with the same quantity expected in random networks. We
start with a weighted version of the Erdos-Rényi random net-
work ensemble because it is a basic ensemble. Construct-
ing the topology requires a single parameter, the probabil-
ity of a connection between two neurons. There are 514 gap
junction connections over 279 somatic neurons in C. elegans,
and so we choose the probability of connection as 0.0133 =
2 x 514/279/278. After fixing the topology, we choose the
multiplicity of the connections by sampling randomly accord-
ing to the C. elegans multiplicity distribution [2, Fig. 3(B)],
which is well-modeled as a power-law with parameter 2.76.
Note that in general the giant component for such a construc-
tion will be much larger than that of C. elegans.

Figure 2 shows the survival function of the empirical all-
pairs geodesic distance and of the empirical all-pairs weighted
distance of one hundred random networks. A random exam-
ple is highlighted. As can be observed, the effective diameter
for weighted distance is about 5 and for geodesic distance is
about 6. Hence the effective diameter for bottleneck distance
is between 5 and 6, significantly less than that for the C. ele-
gans network.

Now we consider a degree-matched weighted ensemble
of random networks. In such a random network, the degree
distribution matches the degree distribution of the gap junc-
tion network; the degree of a neuron is the number of neurons
with which it makes a gap junction. Such a random ensemble
is created using a numerical rewiring procedure to generate
samples. Upon fixing the topology, the multiplicity of con-
nections is samples as for the Erdos-Rényi ensemble. Note
that in general the giant component for such a construction
will be much larger than that of C. elegans.

Figure 3 shows the survival function of the empirical all-
pairs geodesic distance and of the empirical all-pairs weighted
distance of one hundred random networks. A random exam-
ple is highlighted. As can be observed, the effective diameter
for weighted distance is about 2 and for geodesic distance is
about 5. Hence the effective diameter for bottleneck distance
is between 2 and 5, quite significantly less than that for the
C. elegans network.

These results reveal a key nonrandom feature in synap-
tic connectivity of the C. elegans gap junction network, but
perhaps contrary to expectation. The network has a non-
randomly worse bottleneck capacity compared to basic ran-
dom graph ensembles. It enables globally slower behavioral
speed than similar random networks. In contrast, we had
previously found that at the micro-level of small functional
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Fig. 1. Survival function for the empirical all-pairs distance
distributions of the C. elegans gap junction neuronal network
giant component. The weighted distance is listed in terms
of inverse gap junctions. The dashed line indicates the 95th
percentile used to define effective diameter.
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Fig. 2. Survival function for the empirical all-pairs dis-
tance distributions of 100 Erdds-Rényi random network giant
components; a random example is highlighted in red. The
weighted distance is listed in terms of inverse gap junctions.
The dashed line indicates the 95th percentile used to define
effective diameter.
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Fig. 3. Survival function for the empirical all-pairs distance
distributions of 100 degree-matched random network giant
components; a random example is highlighted in red. The
weighted distance is listed in terms of inverse gap junctions.
The dashed line indicates the 95th percentile used to define
effective diameter.

sub-circuits, the C. elegans gap junction network has several
hub-and-spoke structures [25,26], which are actually optimal
from an information flow perspective [12]. Thus, these re-
sults lend some greater nuance to efficient flow hypotheses in
neuroscience.

4. CONCLUSION

Our previous results had shown that the behavioral speed of
the nematode worm C. elegans is close to the lower bound
obtained from optimal information flow speed, as constrained
by the noise, signaling constraints, and topology of the net-
work [12]. Here we considered the possibility of changing the
network topology itself and discovered that the network has
much lower bottleneck capacity than similar random graphs
(whether Erdos-Rényi or degree-matched). The network does
not seem to be optimized for global information flow.

On the other hand, we had also noted the prominence of
hub-and-spoke functional sub-circuits in the C. elegans gap
junction network [25,26] and proved their optimality proper-
ties for information flow under number of gap junctions con-
straints [12].

In terms of neural organization, this suggests that smaller
sub-circuits within the larger neuronal network are responsi-
ble for specific functional reactions, and these should have
fast information flow (to quickly achieve the computational
objective of that circuit, such as chemotaxis). Behavioral
speed of the global network may not be biologically relevant.

With the growing prevalence of theoretical connectomics,
hypotheses of neural organization according to functional

sub-circuits with large information flow capacity within them
should be investigated and further screened for to understand
phenotype differences among individuals.

Within the field of signal processing itself, it is of interest
to study the bottleneck capacity of other kinds of networks,
whether random ensembles—such as Watts-Strogatz small
worlds, Barabasi-Albert scale-free networks, Kronecker ran-
dom graphs, or random geometric graphs—or networks that
arise in other application domains.

5. ACKNOWLEDGMENT

Thanks to Devavrat Shah, Dmitri B. Chklovskii, Sanjoy K.
Mitter, and Aki Nikolaidis for inspiring discussions. Thanks
to Tongtong Li for the impetus.

6. REFERENCES

[1] J. G. White, E. Southgate, J. N. Thomson, and S. Bren-
ner, “The structure of the nervous system of the nema-
tode Caenorhabditis elegans,” Proc.-R. Soc. Lond., Biol.
Sci., vol. 314, no. 1165, pp. 1-340, Nov. 1986.

[2] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall,
and D. B. Chklovskii, “Structural properties of the
Caenorhabditis elegans neuronal network,” PLoS Com-
put. Biol., vol. 7, no. 2, p. e1001066, Feb. 2011.

[3] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain,
H. S. Seung, and W. Denk, “Connectomic reconstruc-
tion of the inner plexiform layer in the mouse retina,”
Nature, vol. 500, no. 7461, pp. 168-174, Aug. 2013.

[4] S. ya Takemura, A. Bharioke, Z. Lu, A. Nern, S. Vita-
ladevuni, P. K. Rivlin, W. T. Katz, D. J. Olbris, S. M.
Plaza, P. Winston, T. Zhao, J. A. Horne, R. D. Fetter,
S. Takemura, K. Blazek, L.-A. Chang, O. Ogundeyi,
M. A. Saunders, V. Shapiro, C. Sigmund, G. M. Ru-
bin, L. K. Scheffer, I. A. Meinertzhagen, and D. B.
Chklovskii, “A visual motion detection circuit suggested
by Drosophila connectomics,” Nature, vol. 500, no.
7461, pp. 175-181, Aug. 2013.

[5] D. J. Bumbarger, M. Riebesell, C. Rodelsperger, and
R. J. Sommer, “System-wide rewiring underlies behav-
ioral differences in predatory and bacterial-feeding ne-
matodes,” Cell, vol. 152, no. 1-2, pp. 109-119, Jan.
2013.

[6] A. Zalesky, A. Fornito, and E. T. Bullmore, ‘“Network-
based statistic: Identifying differences in brain net-
works,” Neurolmage, vol. 53, no. 4, pp. 1197-1207,
Dec. 2010.

6308



(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

Z. Shehzad, C. Kelly, P. T. Reiss, R. C. Craddock, J. W.
Emerson, K. McMahon, D. A. Copland, F. X. Castel-
lanos, and M. P. Milham, “A multivariate distance-based
analytic framework for connectome-wide association
studies,” Neurolmage, vol. 93, no. 1, pp. 74-94, Jun.
2014.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal pro-
cessing on graphs,” IEEE Signal Process. Mag., vol. 30,
no. 3, pp. 83-98, May 2013.

S. Segarra, W. Huang, and A. Ribeiro, “Diffusion and
superposition distances for signals supported on net-
works,” IEEE Trans. Signal Inf. Process. Netw., vol. 1,
no. 1, pp. 20-32, Mar. 2015.

I. J. Deary, L. Penke, and W. Johnson, “The neuro-
science of human intelligence differences,” Nat. Rev.
Neurosci., vol. 11, no. 3, pp. 201-211, Mar. 2010.

T.-W. Lee, Y.-T. Wu, Y. W.-Y. Yu, H.-C. Wu, and T.-J.
Chen, “A smarter brain is associated with stronger neu-
ral interaction in healthy young females: A resting EEG
coherence study,” Intelligence, vol. 40, no. 1, pp. 38-48,
Jan.-Feb. 2012.

L. R. Varshney and D. Shah, “Informational limits of
neural circuits,” in Proc. 49th Annu. Allerton Conf.
Commun. Control Comput., Sep. 2011, pp. 1757-1763.

C. Rockland, “The nematode as a model complex sys-
tem: A program of research,” M.L.T. Laboratory for In-
formation and Decision Systems, Working Paper WP-
1865, Apr. 1989.

B. Szigeti, P. Gleeson, M. Vella, S. Khayrulin,
A. Palyanov, J. Hokanson, M. Currie, M. Cantarelli,
G. Idili, and S. Larson, “OpenWorm: an open-science
approach to modeling Caenorhabditis elegans,” Front.
Comput. Neurosci., vol. 8, p. 137, Nov. 2014.

M. Pollack, “The maximum capacity through a net-
work,” Oper. Res., vol. 8, no. 5, pp. 733-736, Sept.-Oct.
1960.

T. C. Hu, “The maximum capacity route problem,”
Oper. Res., vol. 9, no. 6, pp. 898-900, Nov.-Dec. 1961.

L. R. Ford, Jr. and D. R. Fulkerson, “Maximal flow
through a network,” Can. J. Math., vol. 8, pp. 399-404,
1956.

P. Elias, A. Feinstein, and C. E. Shannon, “A note on
the maximum flow through a network,” IRE Trans. Inf.
Theory, vol. IT-2, no. 4, pp. 117-119, Dec. 1956.

6309

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

O. Ayaso, D. Shah, and M. A. Dahleh, “Information
theoretic bounds for distributed computation over net-
works of point-to-point channels,” IEEE Trans. Inf. The-
ory, vol. 56, no. 12, pp. 6020-6039, Dec. 2010.

S. Song, P. J. Sjostrom, M. Reigl, S. Nelson, and
D. B. Chklovskii, “Highly nonrandom features of synap-
tic connectivity in local cortical circuits,” PLoS Biol.,
vol. 3, no. 3, pp. 0507-0519, Mar. 2005.

A. Ramamoorthy, J. Shi, and R. D. Wesel, “On the ca-
pacity of network coding for random networks,” IEEE
Trans. Inf. Theory, vol. 51, no. 8, pp. 2878-2885, Aug.
2005.

R. A. Costa and J. Barros, “On the capacity of small-
world networks,” in Proc. IEEE Inf. Theory Workshop
(ITW’06), Mar. 2006, pp. 302-306.

R. Rammal, G. Toulouse, and M. A. Virasoro, “Ultra-
metricity for physicists,” Rev. Mod. Phys., vol. 58, no. 3,
pp. 765-788, July-Sept. 1986.

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evo-
lution: Densification and shrinking diameters,” ACM
Trans. Knowl. Discovery Data, vol. 1, no. 1, p. 2, Mar.
2007.

E. Z. Macosko, N. Pokala, E. H. Feinberg, S. H. Cha-
lasani, R. A. Butcher, J. Clardy, and C. I. Bargmann, “A
hub-and-spoke circuit drives pheromone attraction and
social behaviour in C. elegans,” Nature, vol. 458, no.
7242, pp. 1171-1176, Apr. 2009.

I. Rabinowitch, M. Chatzigeorgiou, and W. R. Schafer,
“A gap junction circuit enhances processing of coin-
cident mechanosensory inputs,” Curr. Biol., vol. 23,
no. 11, pp. 963-967, Jun. 2013.



