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ABSTRACT 
�
While most resting state connectivity studies assume that 
resting-state fMRI time series are stationary, there is 
growing evidence indicating that they are in fact 
dynamically evolving. This paper describes two pieces of 
our work related to the resting state dynamics. We assume 
the resting-state brain to be in quasi-static states with 
spontaneous switching between them. First, we apply a 
hidden Markov model to the resting state fMRI data and 
derive model parameters reflecting the states. With this 
approach, we identified 9 reproducible states, which 
resemble resting state networks described in the literature. 
The second piece of work is the dynamic parcellations of 
thalamus, leading the state specific parcellations and their 
merged results, both of which revealed new insights about 
the thalamic function and connectivity. 
 

Index Terms— fMRI, functional connectivity, hidden 
Markov model, resting state fMRI, brain dynamics 
�

1. INTRODUCTION 
 
Resting state fMRI (rsfMRI) is becoming a widely used 
methodology for studying brain connectivity. While most of 
the studies to date have assumed the resting state to be 
stationary, such an assumption has been shown to be 
invalid. In fact, there is ample data indicating that the resting 
state fMRI data is nonstationary. However, there is a general 
consensus that such dynamics is not completely random but 
can be described by several quasi-state states and 
spontaneous switching between them. The work described 
in the present paper is based on this notion.  

First, even though the resting state can be considered to 
consist of several quasistatic states, what these states are and 
when they appear are not trivial to determine. Several 
approaches have been introduced for ascertaining rsfMRI 
data. However, existing analysis approaches have 
limitations. Treating each time point as independent, 
techniques such as co-activation patterns (CAPs) [1, 2] and 
spatial independent component analysis (ICA) [3] have not 
fully exploited information contained in the temporal order 
of rsfMRI time series. On the other hand, while the sliding 
window approach [4] takes into account the sequential 

information in the data, the use of a fixed-length sliding 
window [5] may lead to the mixing of signal from multiple 
states in the same window, resulting in contamination and 
interference between states. Another dynamic approach, 
temporal ICA, can also be employed to investigate fMRI 
time series [6] but it is limited by the assumption of 
temporal independence [7].  

One alternative approach is modeling with a hidden 
Markov models (HMM) which can describe the latent state 
switching process of the brain as a Markov chain with 
different transition probabilities between states. This 
dynamic model explicitly takes into account the temporal 
order of data and is not restricted by the aforementioned 
limitations. The HMM has been employed as a sequential 
modeling tool in studying the brain [8-11]. HMM was 
applied to electrophysiological data and detected 4 brain 
states of neuronal firing patterns in rodents  subjected to 
different types of stimuli [8]. Applied to human data, the 
HMM was able to show changes in functional connectivity 
patterns in magnetoencephalography [9] and fMRI [10, 11]. 
On a related note, the hidden Markov random field, was 
applied in fMRI to detect binary state (on/ off) switching on 
voxel level [12-14]. The approach we propose here is 
significant different from existing fMRI work. In addition, 
we also introduce a method to determine the number of 
brain states based on the reproducibility of the algorithm. 

 
Recently, rsfRMI connectivities have also been used as 

a basis to parcellate the brain. For example, whole brain 
parcellation was derived using a clustering technique [15] 
and thalamus was segmented using connections to different 
regions of the cortex [16].  With the understanding that the 
resting state brain can be described by a number of 
quasistatic states, it makes sense to parcellate the brain 
structures using a state-dependent approach. Thus, our 
second piece of work is to perform a state-specific 
parcellation of the thalamus based on its connections to the 
cortex and examine the state-specific parcellations and 
combined parcellation. 
 

2. METHODS 
2.1.�Hidden�Markov�modelling�

It has been shown that the brain is constantly switching 
from one metastable state to another [17]. In this work, the 
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switching process of brain states was modeled as a Markov 
chain (GHMM), with the brain state represented by a 
multivariate Gaussian distribution. In order to derive the 
GHMM that best fits the fMRI observations, its parameter 
set  was estimated using the following objective function: 
 arg  (1) 
where  is the parameter set for the GHMM, 

 are rsfMRI time series with  being the length of 
fMRI time series. The probability of the observations under 
a state is modeled as a multivariate Gaussian distribution 
with the mean vector representing the average activation 
pattern of each brain state. 

The Baum-Welch algorithm [18] was employed to 
solve the optimization problem in equation (1). To initialize 
the algorithm, the fMRI time series, , were fed into a k-
means clustering program to identify  cluster centers, and 
the resultant cluster centers were used to initialize the mean 
of the Gaussian distribution.  

Different initializations of the Baum-Welch algorithm 
may converge to different local optima. While it is a 
common problem for approaches that require nonlinear 
optimization, it is turned around and used a means to 
determine the number of states. More specifically, we split 
our data of 100 subjects into 2 non-overlapping groups of 
subjects (50 subjects each), and trained the GHMM on each 
half of the dataset. The brain states, with a range of preset 
number, were extracted from both halves and compared to 
for their reproducibility. As shown in Fig. 1, the 
reproducibility was the highest when the number of states 
was set to 9. Therefore, our final results of GHMM analysis 
of resting state fMRI data were obtained with 9 states. 

 

 
Fig. 1. The reproducibility of each brain state when total 
states’ number is set to 9 (left) and 30 (right) 
 

Upon the estimation of the parameters, the Viterbi 
algorithm [19] was used to decode the optimal brain state 
sequence, . We also calculated the 
posterior probability, , of each brain 
state at all the time points. 

 
2.2.�Dynamic�parcellation�of�thalamus�
As previously used by Zhang et�al. for thalamus parcellation 
with resting state connectionivity [16], our parcellation also 
focused on the connectvivity of thalamic voxels with 5 
cortical regions of interest (ROIs) in each hemisphere (10 
total). These ROIs are prefrontal cortex (PFC), premotor 

cortex (PMC) plus motor cortex (MC), somatosensory 
cortex (SC), parietal cortex (PC) plus occipital cortex (OC), 
and temporal cortex (TE). The thalamus was extracted using 
the Harvard-Oxford subcortical structural atlas 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and voxels in 
ventricles or white matter regions were removed.   

Preprocessing of the rsfMRI data included standard 
steps of rigid-body motion correction, cross-modal 
registration, spatial transformation, denoising with the ICA-
based “fix” algorithm and regressing out nuisance signals 
[20, 21]. Further steps included band-pass filtering (0.009 
Hz < f < 0.08 Hz) and spatial smoothing (FWHM = 6 mm) 
 This preprocessed data were fed into our analysis 
pipeline as follows. A sliding time window approach was 
applied to divide thalamus and cortex fMRI signals into 
windowed time series. Thalamo-cortical connectivity 
matrices were generated for each of these windows, 
temporally concatenated across subjects, and fed into a 
normalized spectral clustering algorithm to derive thalamo-
cortical connectivity states at the group level, resulting in 9 
states. Within each one of these states, fMRI time series 
from all subjects were temporally concatenated for deriving 
state-specific thalamo-cortical connectivity matrices.  

For thalamus parcellation, the normalized spectral 
classifier was applied again for each state. Classifications of 
left and right thalamus were performed separately according 
to ipsilateral thalamocortical connectivity patterns. State-
specific parcellations were examined individually and then 
combined to produce a merged parcellation by 
superimposing parcel boundaries from all states. In this 
merged result, different subunits were labeled according to 
their spatial overlap with subunits in a histology atlas [22]. 
For comparison purposes, static thalamus segmentation was 
also performed in a fashion similar to the dynamic analysis 
described in the subsequent section with the exception that 
the entire fMRI dataset was treated as a single state.  

 
3. REULSTS 

�
3.1.�Hidden�Markov�modelling�
Fig. 1 illustrates the reproducibility for two different of 
states: 9 and 30. It is evident that with 30 states, some of the 
states are not highly reproducible, possibly leading to 
unreliable results. When the number of states was reduced to 
9, highly reproducible results were obtained. This result led 
us to set the number of states to 9. 

The 9 reproducible states exhibit remarkable spatial 
contiguity, with clearly identifiable regions distributed over 
the brain. More interestingly, the spatial patterns of these 
states resemble those of resting state networks that have 
been derived based on stationary assumption of the fMRI 
time series. For example, the HMM states 2, 6, and 7 
correspond to the attention network, as shown in Fig. 2. 
Furthermore, the spatial patterns of GHMM derived states 
exhibit similarities to those derived using an entirely 
different approach, co-activation patterns, which were 
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derived using an entirely different approach without the use 
of sequential information in the time series. An example of 
this similarity is also shown in Fig. 2. 

 

 
Fig. 2. States with activation in attention network derived by 
HMM and the corresponding co-activation patterns. 
 

With the results of temporal state probabilities, it is 
evident that the brain switches between different states from 
time to time. The dynamics of the switching is rather 
interesting, with an average dwell time on any given state on 
the order of 10 seconds or so. There occupancy time for 
different states ranged from 20% to 5% in this group of 
subjects. 
3.2.�Dynamic�Parcellation�of�Thalamus�

Fig. 3 illustrates 9 state-specific parcellations. For 
comparison, the static parcellation was also included. It is 
interesting to regions that appear in all 9 state-specific 
parcellations are also present in the static parcellation. On 
the other hand, some regions are state-specific and do not 
appear in the static parcellation. This observation suggests 
that a static approach may miss some connections that only 
appear in a small fraction of time and their corresponding 
thalamic substrate may not be identified.  

Fig. 4 presents the result of merging all 9 state-specific 
parcellations. For comparison, we have included a histologic 
parcellation (spatially down sampled to match our rsfMRI 
resolution) and the static parcellation. There is remarkable 
agreement between the merged parcellation and the 
histological parcellation while there is much poorer 
agreement between the histology and the static parcellation. 
More specifically, small subregions of the thalamus shown 
in the histogy, including AV, VLa, VPLp, and PuA, are 
clearly visible in the merged parcellation but are absent in 
the static parcellation. 

 

 
Fig. 3. State-dependent thalamo-cortical connections for the 
medial dorsal nucleus (MD). The dynamically derived 
segmentation of MD are compared with the Morel atlas in (A) and 
their cortical connectivity patterns are shown for all 9 dynamic 
states and the static state in (B). The connectivity patterns in (B) 
are derived from the overlapping regions across all the dynamic 
and static states (the white regions) with the highest cortical 
connections highlighted 
 

4. DISCUSSIONS 
 
While the dynamics of resting state brain has attracted a 
great deal of attention in the study of resting connectivity, 
existing methods for characterizing the dynamics are still 
problematic. The HMM approach we describe here is a 
potentially powerful approach because it provides a means 
to ascertain the number of states, the spatial patterns of the 
states, and the temporal characteristics of the states.  

Our results showed that the approach is highly robust in 
identifying the states of the resting brain. In addition, the 
spatial resemblance of results with existing networks and/or 
patterns in the literature suggests that the approach leads to 
valid results, despite the use of an entirely different strategy. 
Furthermore, our approach provides the temporal 
characteristics of the states. Finally, compared with 
approaches utilizing a sliding window, our approach is not 
affected by temporal blurring and leads to more temporally 
accurate results. Our results to date indicate that the HMM 
warrants further investigation. 

Functional connectivity based brain parcellation is 
also becoming widely accepted in the field. State-
specific parcellation has not been attempted before. 
The results of such parcellation reveal rich 
connectivity and dynamic insights of the thalamus and 
demonstrate a powerful parcellation tool that matches 
better with histology. The state-specific results also 
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exhibit the phasic thalamocortical connectivity 
patterns that are consistent with thalamic function and 
its dynamic nature. Other applications of this approach 
are expected to provide more insights about brain 
connectivity. 
 

 
Fig. 4. Atlas structures identified by the dynamic thalamus 
segmentation. These structures, including the anteroventral 
nucleus (AV), ventral lateral anterior nucleus (VLa), ventral 
posterior lateral posterior (VPLp), anterior pulvinar nucleus (PuA) 
can be seen in the merged dynamic parcels but not in the static 
parcels (A).The dynamic cortical connectivity patterns for each of 
these regions are shown (B). The strongest connections are marked 
with a solid bar. 
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