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ABSTRACT

We consider the problem of decentralized detection of a hypothesis
H using multiple sensors. The sensors also want to keep the fu-
sion center from inferring about another hypothesis G. Each sensor
makes an observation and summarizes the observation using a lo-
cal decision rule. The sensor summaries are communicated to the
fusion center to perform an overall decision making. As the under-
lying joint distribution of the hypotheses and sensor observations is
unknown, we aim at finding sensor decision rules that minimize the
regularized empirical risk of deciding H at the fusion center, while
ensuring that the regularized risk of the fusion center deciding G
correctly is more than a given threshold. We propose an optimiza-
tion approach based on the Gauss-Seidel method, and show that it
converges to a critical point.

Index Terms— Decentralized detection, kernel method, non-
parametric, privacy-preserving, correlated source

1. INTRODUCTION

Sensor networks have seen widespread applications in industrial,
military, and civilian monitoring applications like intrusion detec-
tion, target tracking, leakage detection and fall detection [1-7]. In
the emerging Internet of Things (IoT) paradigm, large numbers of
sensors are deployed to enable sense-making and intelligent analyt-
ics based on the sensors’ observations. This can be modeled us-
ing the decentralized detection framework [8—12], where each sen-
sor makes an observation, summarizes this observation using a local
decision rule, and sends the summary to a fusion center. Based on
the received sensor summaries, the fusion center then makes the fi-
nal inference on a phenomenon of interest. It is intuitively clear, and
has been shown in [13-15], that the error decay rate at the fusion
center increases with the amount and quality of information that the
sensors convey to it.

While the fusion center’s role is to perform inference on a par-
ticular hypothesis of interest, there is nothing stopping it from using
the received sensor information to infer another correlated hypothe-
sis. An example is the deployment of home-monitoring video cam-
eras in old folks’ homes for fall detection. If the cameras transmit
the raw video feed to a fusion center, the fusion center can not only
use these video feeds for fall detection, but also has the potential to
intrude on the privacy of the home inhabitants. The camera sensors
therefore need to perform intelligent observation summary with a
suitable sensor rule in order to limit the amount and quality of infor-
mation they send to the fusion center. Another example is when an
insurance company wishes to determine if a person has a particular
pre-existing medical condition using medical records from hospitals
the person has been treated at. However, these medical records may
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reveal more than the particular condition that the insurance compa-
ny is investigating. The hospitals will need to decide what to send to
the insurance company to avoid disclosing the person’s other medi-
cal conditions. Although this latter example is not in the context of
sensor networks, we can see that it nevertheless falls in the frame-
work of how to preserve privacy in decentralized detection while
still enabling the fusion center to make an inference on a particular
hypothesis.

Several works have addressed the issue of privacy preservation
in sensor networks from different perspectives. In [16], the author
considered the problem of encoding a sequence of independent and
identically distributed (i.i.d.) random variable pairs, so that the dis-
tortion rate of decoding the first source in the pair at a receiver is
bounded by a predefined threshold but the equivocation rate of the
second source is at least above another level. In [17], the authors
proposed a general statistical inference framework to capture the pri-
vacy threat incurred by a user who releases data to a passive but
curious adversary. In [18], the authors studied the bounds of how
much utility is possible for a given level of privacy and vice-versa,
using an information-theoretic framework. In these works, the focus
is on preserving the privacy of a correlated source sequence. This
is different from our problem of interest, which is to preserve the
privacy of a correlated hypothesis state. In [19], preserving the pri-
vacy of a correlated hypothesis state was studied in the decentral-
ized detection framework. The authors assumed that the underlying
joint probability distribution of the hypotheses and the sensor obser-
vations are known a priori. They formulated a Bayesian detection
problem in which optimal sensor rules are derived to minimize the
Bayesian cost incurred at a fusion center for detecting the first hy-
pothesis, while ensuring that the cost for detecting the second hy-
pothesis is above a predefined threshold. The reference [20], consid-
ers decentralized detection in the presence of an eavesdropper. The
goal here is to design suitable sensor rules that limits the capability
of the eavesdropper from inferring the same hypothesis as the fusion
center. Again, the joint probability distribution of the hypothesis and
the sensor observations are known a priori.

Decentralized detection has been widely studied under the as-
sumption that the joint probability distribution of the hypothesis and
the sensor observations are known a priori, and that conditioned on
the true hypothesis state, the sensor observations are i.i.d. [8, 9].
However, in many applications, distribution information may not be
readily available or may be hard to estimate. Sensor observations are
also often noti.i.d. A nonparametric approach to decentralized detec-
tion was introduced by [21], which proposes the use of kernel-based
method to learn the optimal sensor decision rules from a given set of
labeled training data. Subsequently, [22] extended this method using
a weighted kernel to allow sensor selection in the decentralized de-
tection procedure. These works however do not address the privacy
issue described above.
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In this paper, we develop a privacy-preserving nonparametric
decentralized detection method. Similar to [21,22], we assume that
a set of labeled training data is available. We employ a kernel-based
approach to learn the sensor rules so that the empirical regularized
error of detecting one hypothesis is minimized, while the empirical
regularized error of detecting another hypothesis, which we wish to
keep private, is above a given threshold.

The rest of the paper is organized as follows. In Section 2, we
present our system model and problem formulation. In Section 3, we
propose a kernel-based algorithm that determines the optimal sensor
rules and fusion center rules based on a set of training data, subject
to a privacy constraint. We present simulation results in Section 4,
and conclude in Section 5.

2. PROBLEM FORMULATION

Fig. 1. Decentralized detection of H and G.

We consider the problem of designing local sensor decision rules
in order for a fusion center to infer a hypothesis H, while preserv-
ing the privacy of a correlated hypothesis G. As depicted in Fig-
ure 1, suppose that the two hypotheses H and G take binary values
{—1,+1}. Each sensor ¢, t = 1,2,...,S, makes a noisy obser-
vation X' € X of (H,G), summarizes its observation using a lo-
cal decision rule 4* : X +— Z, and transmits Z* = 7*(X") to
a fusion center. We assume that both the observation space and
the local decision space are discrete, i.e., X = {1,2,..., M}, and
Z={1,2,...,L},where M > L. Let X = {X', X? ..., X"}
and Z = {Z*, Z2, ..., Z°}. Based on the received messages Z, the
fusion center makes a decision H = (Z) € {—1,+1} about the
state of the hypothesis H, and a decision G = ~%(Z) € {—1,+1}
about the state of the hypothesis G.

We consider H to be the “public” hypothesis that the sensors
want the fusion center to infer correctly. On the other hand, G is
a “private” hypothesis that the sensors wish to hide from the fusion
center. The fusion center, however, is curious, and after receiving
the local decisions from the sensors, can implement the best rule to
guess the private hypothesis G. Our goal is to find, for each sensor
t,t =1,...,5, alocal decision rule v* to minimize the Bayes risk
P(H # 4™ (Z)), while keeping P(G # % (Z)) sufficiently large
for any fusion rule 4~ the fusion center may employ.

We allow each local sensor decision rule 7%, ¢t = 1,...,5, to
be randomized. Therefore, we can characterize it using a probability
distribution Q*(Z* | X*). Since each Z* can depend only on X°,
the conditional probability of Z given X is given by

S

QzIx)=]]Q"z" | x".

t=1

We assume that the joint probability distribution P(X, H, G) is
unknown, but we are given a set of n i.i.d. training data (x;, hs, g )i=1
sampled from P(X, H, G). Therefore, we adopt the framework of
empirical risk minimization as in [21]. Let ¢ be a convex loss func-
tion, and we seek to minimize the empirical ¢-risk of deciding H
under /2 regularization, while ensuring that the regularized empirical
¢-risk of deciding G is higher than a given threshold 7T'. Follow-
ing [21], we restrict v and 4 to be from a reproducing kernel
Hilbert space H associated with a kernel K. (-, ), i.e., ~H and ~¢
are of the form

ZajKZ(’7§j)7
j=1

for some (a;)j2; € R™, (2;)7%1 € (Z25)™, and 0 < m < oc.
Let ®(z) = K.(-, z) be the feature map. Then, we can express the
fusion center decision rules as [21]

(@) = (v 0),
19(2) = (v, 0(2)),

where w! | w® € H, and (., -) is the kernel inner product associated
with K (-,-). Let ||-|| denote the norm induced by the kernel inner
product. Given the n i.i.d. training data points (z;, hi, gi)i—1, We
seek to
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where A > 0 is a regularization weight, and
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forall z* € X, 2" GZandtzl,Z...,S}.
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Note that in (3), the fusion center attempts to find the best decision
rule for deciding the private hypothesis GG based on a regularized em-
pirical risk minimization since without the regularization, it is known
that the generalization error can become large [23]. Therefore, the
optimal [|w®|| is relatively small. We have used the regularized em-
pirical risk in the constraint (2) instead of just the empirical risk itself
in order to simplify our algorithm design in the next section. In prac-
tical applications, a sufficiently large 7" can be chosen to account for
the additional ||w®|| term.

3. ALGORITHM DESIGN

In this section, we first relax the optimization problem (1), propose
an iterative solution method, and then show that our algorithm con-
verges.
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We employ the same lower bound relaxation as in (15) of [21],
and define ®'(z) := 3, Q(z|z)®(z). We consider the following
min

optimization problem:
wHeH, Qegz¢ ( < Pz Z)>) + %HwH||2’ @
st Zqﬁ(gz(ww ‘@))) + 5l T,
w = argmin 3" 0 (9.0, 9'(2))) + 3 2

wGeH

From the Representer theorem [23], the optimal fusion rules have

the form w!! = ?1alh<1>( ;) where o' = (a{{,...,af)e
R", and w® = 37 | af g:®'(z;) where o = (af,...,ad) €
R"™. Furthermore, let Ko(z,2') = (®'(z), ®'(z")) = E 2D
Q(zlz)Q(2'|z')K.(z,2’). Then, (4) becomes
min ~ F7(a",Q)
alerm,QeQ
st. F9%,Q)>T, )
o = argmin F%(a, Q),
ackn
where
—Z¢< Yol k(s
i=1 =
i=1j=1
and
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By using the interior-point method with the logistic barrier, we
obtain the following optimization problem
~7), ©

] ngQ( 17_])>

FafgigiKo(z; ;).
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= argmin F(,Q),
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st. o

where 1 > 0 is the barrier parameter. From Proposition 2 in [21],
for a fixed () we have

min F°(a%, Q)

a€R™
= Sup {ZQZS*( )\EZO‘Z Qi gngKQ(_w J)}
a®eRrn i=1 i=1 j=1

where ¢* is the conjugate dual of ¢ [24]. Then (6) becomes

min Fo(a™,a%,Q),

)= b
aHern,aGeR™,QeQ

Algorithm 1 Gauss-Seidel Method

1: Input: {hi, gi,zt, ... 25}y

2: Step 0: Initialize o [0] € R", a
satisfy the inequality constraint (5)
3: Stepk > 1:
e Fix o[k — 1] and Q[k — 1], update

“0] € R™,Q[0] € Q, which

k] = o™k —1]
- t&ngFO(gH[k - 1]>QG[1€ - 1]7Q[k - 1])7

where t, < 2/Lg, and Lo is the Lipschitz constant of
the objective function Fjp.

e Fix o™ [k] and Q[k — 1], update
a[k] = a%[k — 1]
- tangFO(QH[kLQG[k - 1}7 Q[k - 1})7
where to, < 2/Lo.
e Fix o [k] and o€ [k], update

Q[k] = arg min
QeQ

|@— @k~ 1+ teVor(a" K. a%W. Qlk 1) .

where tg < 1/Lo.

where

FO(QH7QG7Q)
=r"",Q)

——log( Zc/)

1
9 Z af af gigi Ko(z;,z;) — T)'

i=1 j=1

Although Fy(a,
it can be shown that

aC, Q) is anon-convex function of (QH ,a, Q),

, with both a and Q fixed.
e Fy is convex in o, with both o and Q fixed.
and all other {Q",r # t}

e [y is convex in gH

e Fy is convex in Q°, with o©, o
fixed.

We make use of the above properties in Algorithm 1 to minimize Fy
over (a*?, 2%, Q) using a Gauss-Seidel method. At each step, each
parameter is updated by the gradient projection method.

Since Fp is not jointly convex over (a'?,a%, Q), Algorithm
1 may not converge to a global optimal solution. Nevertheless,
supposing that ¢ is a real analytic function, then since the compo-
sition of real analytic functions is real analytic, we conclude that
Fo(a™, o, Q) is a real analytic function, which is bounded from
below. Then, using similar arguments as that in Theorem 4 of [22],
we have the following convergence result. The proof is omitted here
due to space constraint.

Proposition 1. If ¢ is a real analytic function, then Algorithm 1
converges to a critical point.
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4. SIMULATION RESULTS

In this section, we present simulation results to verify the perfor-
mance of Algorithm 1. We consider the case where there are 20
sensors in the network, and 100 training samples and 1000 test-
ing samples are generated. The sensor observation space is X =
{1,2,...,11}, and the local decision space is Z = {1,2}. Each
data point is randomly generated in (H, G) € {—1,1}* and is inde-
pendent of the others. We evaluate our algorithm with different data
models:

e LID.model. Foreacht = 1,...,.S, we generate i.i.d. sensor
observations by letting X* = x + N*, where N* is generat-
ed uniformly at random from {—2, —1,0,+1,+2}, and z is
chosen according to the realization of (H, G) as in Table 1.

e Chain model. We set X' = 2 + (N' + N?)/2, X° =
z+(N*+N%)/2,and X' = 2+ (N1 +N* + N1 /3 for
eachsensort = 2,...,S — 1, where z and N* are generated
in the same way as in i.i.d. model. This simulates a network
in which the sensors are placed in a line, and neighboring
sensors’ observations are correlated.

(H,Q) x
(-1,-1) -3
(-1,1) -1
1,-1 1

(1,1) 3

Table 1. Sensor observations for different realizations of (H, G).

As shown in Fig 2 and Fig 3, we see that our algorithm yields a
high error rate for the private hypothesis (G, while keeping the error
rate of deciding the public hypothesis H relatively low. And as ex-
pected, the error rates for deciding H and G increase with increasing
threshold 7" in both models.

0.4

—%—1i.i.d. model
0.35} —©— chain model

e
W

Error Rate
=
e o
D G

0.15F

0.1}

0.05 : : : .
0 1 2 3 4 5 6
Threshold T

Fig. 2. Error rate of deciding public hypothesis H as 1" varies.

Next, we investigate how the error rates vary with the correlation
between H and G. We set T' = 54, and generate four different sets
of data, where correlated random variables H and G have different
correlation coefficient values px,a.

0.5

—>&—1.1.d. model D
0.45 —©— chain model ]

<
~

Error Rate
=
54 W
RO

0 1 2 3 4 5 6
Threshold T

Fig. 3. Error rate of deciding public hypothesis G as 1" varies.

We show in Fig 4 the change of the error rates of H and G as
the correlation coefficient of the joint hypothesis varies. We can find
that the detection ability become more similar if H and G are more
correlated.

1
0.8
» 0.6
Q)
~
=
R o4l
0.2t
0 2 — . ) .
0 0.2 0.4 0.6 0.8 1

lpmcl

Fig. 4. The ratio between the error rates of H and G, as the correla-
tion coefficient varies

5. CONCLUSION

In decentralized detection network, we studied the way to protect the
private signal of correlated source from the curious fusion center. In
this work, we proposed an algorithm to design the local decision
rule and fusion center rule. And we ran several simulations to test
our result.
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