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ABSTRACT

In this paper, a time-varying dynamic Bayesian network
model is shown to describe human-induced RF fluctuations
for the purpose of non-cooperative and device-free radio-
based body motion recognition (radio vision). The technol-
ogy relies on pre-existing wireless communication network
infrastructures and processes channel quality information
(CQI) for human-scale sensing. Body movements leave a
characteristic footprint on the CQI sequences collected dur-
ing consecutive radio transmissions over multiple co-located
links. Body-induced RF footprints are proved to be effec-
tively characterized by temporarily coupled hidden Markov
chains: abrupt changes of body postures make CQIs observed
over co-located links temporarily coupled while being uncou-
pled for slow body movements. Learning and classifica-
tion/inference problems are discussed based on experimental
measurements. Device-free radio vision performances are
evaluated for arm gesture and fall detection applications.

Index Terms— Dynamic Bayesian networks, time-
varying HMM, device-free radio vision, activity recognition.

1. INTRODUCTION

Radio vision (RV) systems leverage body-induced diffraction,
reflection and scattering phenomena that affect the radio-
frequency (RF) propagation for human motion recognition.
RV technologies not only allow localization and tracking of
people [1][2][3], but also human activity detection [4][5][6].
Body movements are identified and tracked by analyzing the
human-induced perturbations of the same RF field generated
for wireless data communication, without the need to employ
any additional wearable sensor (sensor-free detection), nor
to ask for specific user actions (non-cooperative detection).
Tracking of human motion and recognition of activities are
done through real-time processing of the wireless channel
quality information (CQI) over consecutive transmissions.
CQI can be either in the form of baseband (BB) radio channel
state information (CSI), or received signal strength (RSS)
values. RV systems are generally based on the joint process-
ing of specific CQI footprints: in fact, when available, CQIs

Fig. 1. Wireless network deployment and CQI experimental
footprints (RSS) corresponding to a specific arm gesture.

from multiple links can be combined to improve detection
accuracy.

Here, we propose and analyze a novel Dynamic Bayesian
Network (DBN) model [7] that can effectively describe the
human-induced RF fluctuations and account for spatial (link-
wise) correlation of the channel response over multiple links.
Analysis of RF measurements reveals that body motions make
CQI processes non-stationary, while RF observations over
different links might be temporarily coupled due to abrupt
changes of body postures, but uncoupled (or weakly coupled)
for slow body movements. CQI footprints are thus character-
ized by coupled Hidden Markov (CHM) chains [8]. Finally,
focusing on human activity recognition for assisted living
applications [9], learning issues and inference/classification
problems are discussed based on experimental measurements.

2. CQI PROCESSING

Let us consider a wireless mesh network whose transmissions
are organized into periodic frames, or symbols, and a person
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inside the propagation area performing the activity Θ defined
as a generic combinations of elementary body motions, with
Θ = Ø representing an activity of no interest for recognition
purposes, i.e., for human body in free state, or located outside
the detection area. The effects of the user state Θ on the chan-
nel response are observed over T consecutive received frames
(symbols) from which CQI information can be extracted. The
CQI (in dB scale) over link ` and frame (symbol) 1 ≤ t ≤ T
corresponding to the user state Θ can be modeled as

s
(`)
t (Θ) = q

(`)
t (Θ) + s̄(`)(Ø) + u

(`)
t , (1)

where s̄(`)(Ø) = Et

[
s

(`)
t (Ø)

]
is the (pre-calibrated) av-

erage CQI observed in the human-free state, q(`)
t (Θ) =

E
[
s

(`)
t (Θ)− s̄(`)(Ø)

]
models the body-induced CQI shifts,

averaging out background noise term u
(`)
t caused by: i) mea-

surement errors; ii) effects of environmental changes; iii)
time-warping effects as a result of changes in body move-
ment speed, and iv) imperfect body movements. Shifts
q

(`)
t model body-induced shadowing, diffraction [10] and

scattering effects (e.g., accounting for arms influence [11]).

The sequence of CQI observations s
(`)
1:T(Θ) =

{
s

(`)
t

}T

t=1
acts as human-induced footprint; likewise, the CQI profile

q
(`)
1:T(Θ) =

{
q

(`)
t

}T

t=1
highlights the deviations (or shifts)

with respect to the human-free state.

Recognition of human activity is commonly based on
multi-link processing [4]; Fig. 1 shows the CQI profiles (in
terms of RSS) observed over four selected IEEE 802.15.4
links (out of N = 240 network links) featuring a person rais-
ing and lowering both arms (as depicted in the 4 frames on the
top). The RSS shifts, represented here as q(`)

t (Θ) + s̄(`)(Ø)
for comparative analysis with the corresponding RSS ob-
servations, are highlighted in solid lines and refer to T=100
consecutive data frames. The profiles have been obtained
from 14 RSS measurements s(`)

t (Θ) collected in-lab for all
links and correspond to the same repeated gesture (but sub-
ject to imperfect body movements and varying motion speed).
Links are located at 0.5m above the ground and with layout
depicted in the right side. Abrupt changes of body postures,
as part of activity Θ (e.g., up/down arm movements: frame 2
to 3 and frame 3 to 4), make the corresponding CQI processes
highly time-varying. In particular, CQI shifts extracted from
co-located links show substantial correlation in correspon-
dence of fast body movements (e.g., being subject to similar
body-induced micro-Doppler effects [12]). On the contrary,
for slow body movements (e.g., wandering, standing), RF
data-sets are mostly influenced by environmental changes in
the surroundings of the link, and thus could be reasonably
assumed as marginally correlated. Non-stationarity of CQI
processes will be further addressed in the next sections.

Fig. 2. Dynamic Bayesian network modeling and CQI extrac-
tion over two paired wireless links.

3. TIME-VARYING BAYESIAN NETWORK CQI
MODELING AND INFERENCE

In what follows, CQI profile terms q
(`)
1:T(Θ) take the role of

hidden process states. Moreover, it is: E
[
q

(`)
t |q

(`)
t−1, ..., q

(`)
1

]
=

E
[
q

(`)
t |q

(`)
t−1

]
since we assume that first-order Markov model-

based inference applies. RV systems leverage on dense
deployments of devices acting as virtual co-located anten-
nas/links. Therefore, they process multi-dimensional CQI
sequences, i.e., S1:T =

[
s

(`1)
1:T (Θ), ..., s

(`N )
1:T (Θ)

]
acquired

from selected link sets {`1, ..., `N}. A time-varying [7] DBN
is proposed here to model the interactions of CQI sequences
over multiple links. Hidden CQI shifts are therefore repre-
sented in terms of a set of mutually coupled random variables
qt(Θ) =

[
q

(`1)
t , ..., q

(`N )
t

]
, that are hidden into the corre-

sponding CQI observations st=
[
s

(`1)
t , ..., s

(`N )
t

]
as

st(Θ) = qt(Θ) + s̄(Ø) + ut (2)

with background noise vector ut =
[
u

(`1)
t , ..., u

(`N )
t

]
and

the corresponding human-free CQI terms s̄(Ø). The DBN
model λ(Θ) consists of: i) a prior network structure G0 that
defines the initial dependency among link states (or nodes)
Pr [q0|G0] =

∏N
k=1 Pr

[
q

(`k)
0 |G0

(
q

(`k )
0

)]
with G0 (·) col-

lecting the parent set of q(`k )
0 in the graph and ii) a transition

network graph Gt from which the probabilities of each state
conditioned on the other variables can be computed as

Pr [qt+1|qt ,Gt ] =

N∏
k=1

Pr
[
q

(`k)
t+1 |Gt

(
q

(`k )
t

)]
. (3)
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Fig. 3. Time-varying transition probabilities Pr [qt+1|qt ,Gt ]
estimated from training for 2 selected initial states qt (with
corresponding CQI shifts in dB scale), and for two link
pairs:(6, 14), (7, 12) - top - and (6, 13),(6, 11) - bottom. Shift
values for joint states qt+1 are omitted to ease visualization.

CQI observation probabilities Pr[st|qt ] can be easily
trained from data or chosen to account for background mea-
surement noise and possible time-warping effects.

In the following sections, we restrict our attention to time-
varying CHM modeling [8]. As depicted in Fig. 2, selected
pairs of co-located links ζk,h := (`k, `h) are allowed to inter-
act (for some relevant time epochs t) by mutually influencing
each other states. Transition network for paired links ζk,h can
be thus simplified ∀t as Gt :={Gc,Gc̄} to represent coupled
Gc

(
q

(`k )
t

)
:=
{
q

(`k)
t , q

(`h)
t

}
, and uncoupled Gc̄

(
q

(`k )
t

)
:={

q
(`k)
t

}
configurations at epoch t. The (binary) sequence

G1:T−1 := {G1, ...,GT−1} thus rules the time-varying cou-
pling of the embedded CQI shifts.

Considering the coupled link pair ζk,h, the state transi-
tion probability at time epoch t is Pr [qt+1|qt,Gt = Gc] =

a
(`k)
m|n,q × a

(`h)
p|n,q with a(`k)

m|n,q = Pr
[
q

(`k)
t+1 = qm|qt = qn,q

]
and qn,q =

[
q

(`k)
t = qn, q

(`h)
t = qq

]
. The same con-

siderations apply also to a
(`h)
p|n,q . For uncoupled epochs

Pr [qt+1|qt,Gt = Gc̄] = a
(`k)
m|n × a

(`h)
p|q with straightforward

definitions. For the same example summarized in Fig. 1,
Fig. 3 shows the time-varying transition probability functions
(3) estimated from training data-sets for 2 selected initial
states and link pairs. The highlighted epochs correspond to
coupled/uncoupled states: in particular, it can be shown that
coupled states are mostly induced by fast up/down move-

ments of the arms.
Likelihood evaluation for activity classification is based

on the forward-backward algorithm (i.e., frontier method
[13]): the joint probability Pr [S1:t,qt = qn,q|G1:t−1] =
αt(qn,q |G1:t−1) is iteratively evaluated for 0 ≤ t ≤ T− 1
and accounts for time-varying coupled states as

αt+1 (qt+1 = qm,p |G1:t) = Pr (st+1|qm,p)×
×
∑
qn,q

αt (qn,q |G1:t−1)× a(`k)
m|n,qa

(`h)
p|n,q

(4)

with α0 (q0) = Pr [q0|G0]. The likelihood function used
for classification is Pr [S1:T|λ] =

∑
qT
αT(qT|G1:T−1) while

the decision on activity Θ̂ over the link pair ζk ,h is taken if
Γζk,h (Θ) ≥ τ with log-likelihood rate Γζk,h (Θ) = ln Pr[S1:T|λ(Θ)]

Pr[S1:T|λ(Ø)]

and major voting over the selected link pairs. Model λ(Ø) for
human-free state is given by standard HMM and trained with
CQI data corresponding to random body movements in the
same area. Varying threshold τ , analyzed in Sect. 5, defines
the detector receiver operating characteristic (ROC) points
and achievable sensitivity/false positive rates.

4. DBN MODEL: LEARNING AND TRAINING

Expectation-Maximization (EM) algorithm can be applied
to locally maximize the model likelihood through an itera-
tive procedure. Starting from a DBN model estimate λ(j) at
iteration j, it evaluates the time-varying (a-posteriori) proba-
bilities of state occurrence/transition, given the new observed
sequence S̄

(j+1)
1:T for activity Θ. These probabilities are then

used to reestimate the DBN parameter set λ(j+1) such that
Pr

[
S̄

(j+1)
1:T |λ(j+1)

]
≥ Pr

[
S̄

(j+1)
1:T |λ(j)

]
, while the procedure

stops when some limiting criterion on convergence is met. In
what follows, we focus on learning of time-varying transition
network and states a(`k)

m|n,q(j + 1), a
(`h)
p|n,q(j + 1), while rees-

timation of initial state and observation probability can be
easily extended following standard Baum-Welch method [8].

Let us define, for step j, the state transition probabilities
a

(`k)
m|n,q(j), a

(`h)
p|n,q(j), and, for the new step j + 1, the binary

sequence of transition networks G
(j+1)
1:T−1 := {G1, ...,GT−1},

reestimation of probability terms a(`k)
m|n,q(j+1), a

(`h)
p|n,q(j+1)

from step j is based on ξt,c = Pr
[
qt+1 ,qt |̄st,G(j+1)

t = Gc, λ
(j)

]

ξt,c (qm,p,qn,q) =
αt

(
qn,q |G(j+1)

1:t−1

)
a
(`k)

m|n,q
(j)a

(`h)

p|n,q
(j)

Pr
[
S̄

(j+1)
1:T |λ(j)

]
×Pr (̄st|qn,q)βt+1

(
qm,p |G(j+1)

t+1:T−1

) ×

(5)
with backward equation βt= Pr

[
S̄

(j+1)
t+1 :T|qt = qm,p ,G

(j+1)
t+1:T−1

]
iteratively computed as in (4). Given the joint state probabili-
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ties πt,c(qn,q) =
∑
m,p ξt,c (qm,p,qn,q), finally it is

a
(`k)
m|n,q(j + 1) =

∑
∀t|Gt=Gc

∑
p ξt,c (qm,p,qn,q)∑

∀t|Gt=Gc
πt,c (qn,q)

. (6)

The corresponding terms a(`k)
m|n(j+1), a(`h)

p|q (j+1) for uncou-

pled time epochs G
(j+1)
t = Gc̄ are not shown but straightfor-

wardly defined given ξt,c̄ and πt,c̄(qn,q) =
∑
m,p ξt,c̄ (qm,p,qn,q).

Finally, reestimation of the binary sequence G
(j+1)
1:T−1 based on

G
(j)
1:T−1 can be found by exhaustive search as

G
(j+1)
1:T−1 = arg min∀G1:T−1

∥∥∥G1:T−1 −G
(j)
1:T−1

∥∥∥
s.t.Pr

[
S̄

(j+1)
1:T |λ(j+1)

]
≥ Pr

[
S̄

(j+1)
1:T |λ(j)

] (7)

with norm ‖·‖2. Eq. (7) is chosen to guarantee stability of the
solution with respect to the initial sequence G

(0)
1:T−1.

5. EXPERIMENTAL VALIDATION

The proposed DBN model is validated through extensive
experimental measurements, focusing on arm gesture recog-
nition (Fig. 1) and detection of impact shock during fall
event. Gesture detection measurements are obtained from
two human targets with different body structures but placed
at the same location (estimated through localization methods
[2] [3]). For fall detection, training data-sets are obtained
for target falling at different directions i.e., front, rear, left
and right. The corresponding channel quality measurements
are obtained from 16 IEEE 802.15.4 standard-compliant RF
nodes randomly deployed in the surrounding of the target
and processing RSS measurements as CQI data. In what fol-
lows, we compare the detection performance of the proposed
model against the ones obtained with the plain HMM-based
single link model [14]. Fig. 4.a and Fig. 4.b show the ges-
ture (DR) and non-gesture (NR) detection ratios for all 240
uncoupled links (left), and for a selection of 182 pairs of cou-
pled links (right), respectively. The proposed DBN approach
jointly takes into account the correlation of CQIs over paired
links and the non-stationarity of the data-sets due to fast body
movements. Compared with the single-link approach Fig. 4.a,
characterized by an experimental average DR-NR separation
of 8 dB, the DBN model-based detector of Fig. 4.b guarantees
an average separation greater than 86 dB.

The ROC curves for fall detection (red lines) and arm ges-
ture recognition (blue lines) compare the sensitivity vs. the
false positive rate of the detector: the results are depicted in
Fig. 5 based on a complete set of 4326 measurements from the
single links and 11284 measurements from the paired links.
The solid lines highlight the performances of the proposed
DBN-based detector while the dashed lines correspond to the
single link HMM-based detector case. Focusing on fall de-
tection, the use of paired links for detection guarantees a sen-
sitivity up to 0.994 with corresponding false positive rate of

Fig. 4. DR and NR likelihood ratios for arm gesture recogni-
tion, corresponding to (a) 240 HMM-based values over single
links and (b) DBN-based ones over 182 pair of links.

Fig. 5. ROC curve for fall detection (red line) and arm ges-
ture detection (blue line) using single link HMM-based detec-
tion (dashed lines) and time-varying DBN-based (solid lines)
methods.

about 0.01 that is well aligned with existing sensor-based de-
vices [15]. On the contrary, for HMM-based detector, achiev-
able sensitivity for the same false positive rate drops down to
0.75. These results are obtained at the expense of an increased
computational complexity with respect to the uncoupled links
case. However, the adoption of a major voting strategy over
an optimized subset of links (not considered here) would pro-
vide additional performance and computational complexity
improvements in both cases.

6. CONCLUSIONS

The paper proposes the use of DBN-based techniques for
device-free radio vision systems. The DBN model describes
the human-induced CQI footprints, and account for non-
stationarity and spatial (link-wise) correlation of the channel
response over multiple links. The proposed model is vali-
dated for human body motion recognition through extensive
experimental RF measurements, focusing on arm gesture
recognition and fall detection. Detection performance is
analyzed in terms of sensitivity and false positive rates.
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