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ABSTRACT

Internet of Things (IoT) is one of the main technologicahtie in
the recent years. It allows machine-to-machine commuoicatver
the internet. Almost each device may transmit informatiamf its
sensors over the web to enable centralized insights dierivat an
appropriate cloud architecture.

In this paper we review analytical aspects of the sensogyr-inf
mation processing. We emphasize the importance of mustisgn
approach, in which the joint distribution of all sensorsues of a
device is used to derive insights out of the stream of sendaty.
We introduce a novel information theoretic multivariat@cbe de-
tection method based danearest neighbor (KNN) estimation. The
algorithm is designed and implemented to satisfy the requénts of
10T for fast online parallel multisensory information pessing. We
provide a numerical evidence of the validity of the proposexhod
on simulated and real world data.

Index Terms— Internet of Things, Change detection

1. INTRODUCTION

Change detection is an important statistical method foeatitg

changes in a system. The method monitors data streams fiom se

sors embedded in a device. If the values significantly changea
period of time the method outputs an alert. This is a widelydeel
capability in loT where a vast amount of devices should beimon
tored in the unsupervised way.

In this paper we introduce the novel method of Informatioe-Th
oretic Multivariate Change Detection (ITMCD) for multisary in-

2. INFORMATION PROCESSING IN 10T

2.1. 10T Cloud Analytics Platform Characteristics

The Internet of Things domain serves a large variety of ealdiwith
significantly different types of data and different pecutiharacter-
istics. For example, the stationary sensor signals areérgn the
manufacturing, whereas daily periods of activity chanazgéeshuman
generated data in healthcare and wearable industries efbneran
analytical method applicable in an loT cloud cannot rely spe-
cific data pattern and should be adaptive to a new data shape.
additional practical consequence of this variety is thé& che su-
pervision information available for the algorithm setuphese it
is impossible to develop a universal flow for label inforratireat-
ment. The setup stage therefore is limited to collectingagesensor
values for a certain period of time and deriving generalghts of
their distribution.

Real time insights are of special value in many important use
cases, including medical and security applications. Taises im-
portance of algorithms that may run in an online manner, idiog
most updated insights about devices. This requirement itmdb
with Big Data nature of large scale computations emphadizes
need for easy parallelizable algorithms which run in a rieaé twith
small latency. For example, if an online algorithm operates slid-
ing time window of samples then an inherent latency is induzg
the length of the time window. Hence algorithms employingrsgr
time windows are beneficial.

The cloud platform should provide valuable information to a
user, reporting about true events occurring in an enviraniroé a
device. The false alarm rate of an algorithm is the cruciahipee-
ter influencing the user experience and the added value offibée
analytics platform. The false alarm rate should be tunabledapt
to a specific user capacity to react to an alert. In partictier sta-
bility of the false alarm during the running time of an aldlm is a

formation processing in IoT. The method was developed and imcrucial aspect of the algorithm suitability for deployméma cloud

plemented in an 10T cloud computing platform. The methodtsle
about a change in a device behavior by monitoring sensoesalu
samples in a sliding time window of a fixed length in an online
manner. If the multivariate joint distribution of sensomlues in
the beginning of the time window differs significantly frohetjoint
distribution of the sensors values in the end of the windoenttine
method detects a change. To measure the difference bethvesn t
multivariate distributions we apply nonparametric estions of rel-
ative entropy based on k-nearest neighbor calculations [2]

analytics platform.

Typically an 10T cloud platform serves not a single instante
a device, but a set of similar devices. As an example, théophat
may serve a fleet of manufacturing tools in a semiconductmi-fa
cation plant performing a same operation. As another exantipé
platform may collect and process information from cars ope-s
cific model, produced by the same manufacturer. In thesesdhse
cloud computing platform may benefit from aggregating infation
transmitted by a subset of devices. Statistical insightivele from

The rest of the paper is organized as follows. In section 2 wehis information may then be applied to the whole family ofides,

review challenges of information processing in the loT dom&ec-
tion 3 describes the proposed algorithm ITMCD in detail. thecs
is devoted to conducted numerical experiments.
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thus leveraging the Big Data nature of cloud computing in kg a
consequence, a data processing algorithm in 0T analytédfom
benefits from being extendable to a multidevice mode.
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2.2. Multisensory IoT information processing

In many use cases in loT a device is equipped with severabsens
each of them is able to capture a specific characteristicavofon-
ment. For instance, a manufacturing tool may contain a teatpe
sensor, a pressure sensor, a humidity sensor, whereasablesaay

be equipped with an accelerometer and a GPS sensor. Intgecuri

domain, multivariate behavioral and biomechanical aspefch spe-
cific user activity session, such as typing dynamics may berded
and transmitted for an online authentication in a cloud. @ veorld

phenomenon in a device environment usually manifestsf iitsed

variety of physical aspects.

In all these situations the ability to gain insights from tredn-
sory information by analyzing joint distribution of devisensors is
beneficial. First, the multisensory treatment allows to Efynp sig-
nal from a real phenomenon by taking into account multipleses
of information. Small changes in individual sensor valuesyrbe
treated as insignificant, however processing such indalidansors
as a combination may reveal a significant event. Seconde trer
changes in the device behavior that cannot be detected ividnd
ual sensor levels. For example, a change in a correlaticerpat

not allow fast online change detection due to the large nurobe
time points required for training.

The algorithm of Maximum Mean Discrepancy [6] involves a
kernel evaluation on each pair of samples for considered wun-
dow. This would pose a hard computational load on the cloud as
well. In addition, the performance of the algorithm is aféet by
a choice of a specific kernel, which can negatively impactrthe
bustness of the method with regard to 10T. Finally, the bioapgping
based [7] change detection leads to compléx-tree computations,
which are not appropriate for practical implementationthimreal-
time parallel cloud architecture.

3. ITMCD ALGORITHM

A change detection method in |0T runs over a stream of sensbrs
uesX' = X{,..., X}, whered is a number of sensors in a device
andt is a time index. We assume that all sensor values are sam-
pled equidistantly. To detect a consistent change in thebeh

of the device at a reference tintg a time window of sensor val-
ues around this time momenf’-», ..., X% .. X'/ is processed.

between two sensors of a device may witness a significanigehan We denote by the amount ofl-dimensional samples prior to the

in the system behavior however it cannot be traced inspgeatithi-
vidual sensors only. An loT information processing alduoritwill
therefore benefit from being able to process a multisensatyuo.

2.3. Change detection aspects for loT

Change detection methods aim to detect consistent chamgedis-
tribution of random variables over a certain time period [8% we
discussed above due to high variability of possible dattepzt no
prior parametric form can be assumed for sensor valuestuigtn.
It means that change detection algorithms should be apjpiitsio
sample mode. In this model distributions of sensor valuderbe

reference time, ang is the amount of samples after the reference
time. A change is detected if the distribution of points ie Bast
P ~ Prob(X:|t € [-p, ..., —1]) is significantly different from the
distribution of points in thé&uture F' ~ Prob(X:|t € [1, ..., f]):
D(P||F)>T 6
whereD is a distance between distributions @ a threshold, that
defines both detection rate and false alarm rate of the methoa
consequence, a change detection method is defined by a dfoice
a distanceD and a way to determine a threshdld As discussed
above, cloud analytics platform requirements do not allovas-

and after a suspected change are unknown and a distanceshetwesume any parametric form of distributions, so the distastienation
them should be measured in a nonparametric way. Then a ciengeshould be performed in a nonparametric way:

detected if the distance is above an appropriate threshold.

A well-known algorithm for change detection is Kolmogorov

Smirnov Test [4] which employs estimation of empirical disi-
tions of the sensor values before and after the change. ThesKS
a maximal absolute difference between curves of empiris#iilu-
tions as a statistic and assumes the continuity of thesebdigsons.
Under the null hypothesis that the both distributions aneaéthis
statistic has a known Kolmogorov distribution regardlekthe un-
derlying sensor values distributions. Using this Kolmayodistri-
bution a desired false alarm rate may be easily tuned. Havibee
KS may be applied only to one-dimensional random variaklesce
it cannot be used in multisensory information processimngotiiy.

D(P||F) =~ D(X'7, ., X" ||X*, ., X™) @)
We proposed to use the relative entropy as a measure of desim
ity between distributions. This information theoretic gtity also
known as Kullback Leibler divergence is widely used as aadist
between distributions.

DPIIF) = [ Plo)ios 10 @

This metric may be estimated in a nonparametric manner [8].
The k-th Nearest Neighbor (kNN) technique provides a convenient

A number of recent multivariate change detection algor#hm ang computationally fast way for the estimation. Denote an E
employ One Class Support Vector Machines (OCSVM) for multi-cligean distance for a d-dimensional vectoX from the Past to

variate probability distribution estimation. For exampfgeneral-

ized Kolmogorov Smirnov Test [5] applies OCSVM for the recov

ery of level sets of a multivariate distribution and therlizeis one-
dimensional KS. The online kernel change detection aligarif3]

includes learning two OCSVMs followed by distance measiite

common drawback of these algorithms with regard to loT isted
to perform OCSVM model learning as a condition for the chasfere
tection. The OCSVM model learning is computationally exges
since it involves solving a quadratic optimization problefven
more important, it requires a large number of data pointsttier
model training, that is an order of magnitude bigger than rater
of sensors in device. From the point of view of 10T these atgor

pose a significant computational load on the cloud platfonah @
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its nearest neighbak” in the Past as

min X' X7
j#i\i,m)g( X7)

pp(i) = (4)

We also define the distance &F to its nearest neighbak® in the
Future as

vs(i) = min g(X',X) ®)
Then the estimator of [2] is given by
2 dv v (i) f
Dy == log——=+1o 6
! pz B Ep—1 ©

i=1



The authors [2] established asymptotic unbiasedness arh-me | Setup.
square consistency of the estimator (6). The same proois teu Input: Sensor valueX!, ..., X ¢ R¢, false alarm rate

applied to obtairk-nearest neighbor version of the estimator: «, k, past and future time window lengthpsand f
R d& 0) ¥ Output: Thresholdl’
DE =23 log == +1lo 7 Method:
I p; Bk 1 )
. . . . . e Compute scoreS (8) for each sliding time window o
The relative entropy is not symmetrical with respect tordist lengthp + f + 1 in reference data

butions P and F', so we apply symmetrization to get a final score
function S for our change detection method:

S=D(X'r XX . XY) 4+ DXL XX e X))
(8) Run time.

Calculating the scoré requires finding thé-th nearest neigh- | Input: T, k, a time window of sensor values

bor for each point in the time window. The computational cerp | Xt-», ... X% . Xt e R?

ity of this computation i€ (n l<_)g n) for a time window of lengtm Output: Decision whether a change occurred at time

[9]. After the k-th nearest neighbors are found, the rest of compu Method:

tations is performed in linear time. The overall computagioccom- '

plexity of scoreS calculation is therefor®((p + f)log (p + f)). e Compute score (8) for the input values
After we defined the score to be compu_ted, we introduce away o Alert about a change i§ > T

to compute a threshold' that ensures a desired false alarm rate

We utilize the algorithm setup time to colleBtreference time points

X!, ..., X% These reference time points represent a regular device Fig. 1. The ITMCD algorithm

behavior therefore we may calibrate a false alarm catm them.

We apply a sliding time window scor§ computation to the data,

that results in values of scorés, s € [1,..., R — p — f]. We sort Table 1. Performance on 1D Gaussian data

e Sort score values in a decreasing order
e Determine a threshold validg according to (9)

these values in descending order to obtain a monotonic asoge Change| «o KSF | KSE | ITMCDF | ITMCD E
sequences’ > 52 > ... > §%-7=f Then the following choice of | u+ =1 ] 0.1% | 0.04% | 13.1% | 0.09% 13.9%
thresholdI” ensures the desired false alarm rate: p+=11] 1% | 0.5% | 32.6% 0.6% 34.3%
T = glotR—p=1)] © p+ =2 | 0.1% | 0.04% | 87.1% | 0.06% | 92.1%
pt+ = 1% 0.6% | 94.0% 0.8% 96.0%
where[a(R — p — f)] is the closest integer ta(R — p — f). As oc+=11| 1% 0.7% | 1.5% 1.2% 6.3%
a last remark, the sensor valugs, ..., X4 may have different dy- c+=21| 1% 0.4% | 2.5% 1.1% 13.2%
namic ranges, therefore a contribution of a sensor with igedst o+ =3 1% 0.6% | 3.6% 0.9% 26.4%

nominal values may dominate in the score computation. Talemp
the contributions of sensors a preprocessing stage mayjbeed.
We linearly scale each sensor to bring its values to zero raedn 4. EXPERIMENTS
unit variance:

Xi =ki* Xi+bi (10)  4.1. simulated data
The constant multiplicativé; andb; additive factors are cali- ) . )
brated during the algorithm setup, and applied during tgeraghm ~ We performed a number of comparative experiments with the

run time. The algorithm, which we dub Information Theorétial-  ITMCD algorithm.  First, we evaluated its performance on sim

tivariate Change Detection (ITMCD), is summarized in Feylir ulated data in comparison with the well established Kolmogo
The resulting algorithm satisfies all the requirements dfange ~ Smirnov (KS) test. Since the Kolmogorov Smirnov Test is teli

detection algorithm for an 10T cloud analytics platform.ig§mul-  to one-dimensional inputs, we simulated a number of Ganstia

tivariate method does not assume any assumptions on daganpat tributed sequences with zero mean and unit variance. At sionee
runs in a purely unsupervised mode and allows a fast onlirellph ~ Point the parameters of the distribution were changed eithterms
imp|ementation. Itis imp|emented in para||e| Map_Redunﬂ]'ﬂeC_ of meanu or in terms of standard deviatien The task was to detect
ture and deployed in an loT Cloud Analytics Platform. the ch_ange with a predefined falst_e alarm rateA better change
The ITMCD algorithm is readily extendable to the multidevic detection method should have a higher detection rate (Ekeed
mode. Suppose we have a family of deviéssuch that a multi- the false alarm rate (F) closer toin the run time. We fixed the
sensory data stream of deviéec © is given by X, € R?. Data  future window sizef = 10 and used a larger past time window size
streams of a subset of devic®sC © are observed during the setup P = 50 for smalla: = 0.1%, whereas a smaller past time window
stage and a thresholfl(6) (9) is calibrated for each devigee ©. sizep = 30 was used for a larger = 1%. The kNN parameter was

To detect a change in a deviéec © with a data streank settok = 8. The results are summarized in Table 1.
We observed that larger window sizes lead as expected ferbett

not observgd in the setup Sta@i Q) we negd to.co.mpute Fhe performance of both KS and ITMCD. The detection rate of ITMCD
corresponding threshol@(9). Similarity of devices inside family g generally higher than that of KS, especially with regascie-
© allows to replace the unknown threshold by its expectat®®.  (action of standard deviation changes. Also ITMCD exhibitsre
suming that the subs@ is representative this expectation may be gi5pie false alarm rate, which is an important advantageTin |
estimated by averaging thresholds calculated in the seage's Our next numerical simulations were dedicated to the maitiv

s — 1 ate case. The task was to detect a change of a correlatidictf
T0) ~ /T(G)d@ ~ /T(&)d@ ~ ] 2T (1) of 2D Gaussian data. We compare ITMCD with MMD. To ensure
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Table 2. Performance in a keystroke security application el 7

« w | MMDF | MMDE | ITMCDF | ITMCDE
0.5% | 2 NA NA 0.6% 40.2% o4r ]

1% 2 NA NA 0.7% 46.7% 0sf- 1

2% | 2 NA NA 1.0% 58.1% | |

3% | 2| NA NA 1.8% 65.4% ¢

4% 2 NA NA 2.7% 70.9% % 02 ]

5% 2 NA NA 3.0% 72.9% g o2 1
10% | 2 | NA NA 8.6% 84.2% ]
0.5% | 3 NA NA 1.5% 61.7%

1% 3 1.6% 0 1.8% 65.5% o |

2% 3 1.6% 0.1% 2.5% 71.3% 005 1

3% | 3 1.6% 0.2% 3.0% 72.2% i i i i i i i ‘

4% | 3 1.6% 1.3% 4.3% 74.5% S e Rate

5% 3 1.6% 3.1% 5.6% 76.8%

10% | 3 1.9% 59.3% 9.5% 82.7% Fig. 2. ROC of correlation change detection for 2D Gaussian data
05% | 5 NA NA 7.0% 88.1%

1% 5 1.6% 45.7% 2.4% 91.1%

2% | 5| 1.7% 81.0% 3.1% 92.7% change detection should be used with the smallest posaitsentin-
3% | 5 1.7% 86.8% 3.6% 96.6% dow. In addition, the algorithm setup cannot be applied tpexiic
4% 5 1.8% 91.3% 6.1% 97.7% user.

5% | 5| 19% | 92.2% 6.2% 97.7% In this case the ITMCD method was applied in the multidevice
10% | 5 2.0% 92.8% 10.8% 98.5% mode. ITMCD learns only a threshold for an allowed dissinitja

between keystroke dynamics of a specific user. The methosl doe
not learn a specific pattern of keystroke times for each uséhne
a fair comparison we used windows of sizes 120, where after 11S€tUP time, such adaptation occurs automatically in thetirae.
points a change of correlation coefficignfrom 0 to 0.9 might oc- Therefore the threshold of d|$$|m!lgr_|ty betwgen the _kmkﬂ times
cur. ITMCD used the first 100 points as a reference setup thegn, My be learned once per a sensitivityand window sizeg and f
it was applied in run time to remaining 20 points with both gresst Py @veraging appropriate thresholds learned for a set séuStien
window sizep and the future window siz¢ equal to 10. MMD used  this threshold (11) may be applied in a run time for other siser
all 120 points as an input, and aimed to detect a change befivee In the data set we had 400 keystroke times sequences for each
110 points and remaining 10 points. We used a range of predkfin of 50 users. We divided the users into two subsets. The fibstesu
false alarms and built Receiver Operating Curves (ROC) fihb Of 40 users was used for the threshold calibration procedute
methods. The results of 1000 repetitions are summarizedguré ~ Other subset of 10 users were used for emulating an attable ok

2. ITMCD demonstrated a better ROC curve in the whole range ofoWing way. A user performed paccesses for a site, then another
tested detection and false alarm rates. user enters the sittimes. The algorithm is applied to the resulting

window of p + f 21D keystroke timings in order to detect a change
with a predefined false alarm Here we used the symmetrical win-
4.2. Real world data security application dow sizesw = p = f. The kNN parameter was setko= 1. The

. L ITMCD was compared with the MMD method and the results are
We demonstrate a security application of the proposed rdetW® ¢\, mimarized in Table 2.

used keystroke dynamics data [10] to distinguish peopléey typ- Almost for the whole range of tested parameters the perfor-

ing rhythms. A digital fingerprint would tie a person to a calt®- 1,500 of ITMCD is significantly better. ITMCD is able to pragu

based crime in the same manner that a physical fingerpritatie , (ojiahle results even for the most challenging short tirreslaw

person to the scene of a physical crime. _ cases. From the other hand the MMD method often collapses for
In the context of a typical security application a user ®J®  gmg|| time windows and does not return meaningful result1GD

in a site and types a password. Entering the site next times thyemonstrated an adequate performance for this securiticatpn.
user is required to type the password again. If the userentids

were stolen then a hacker would attempt to enter the sitetim.

During these attempts the password would be entered in exeliff 5. CONCLUSIONS

rhythm. Therefore a change detection method applied tceateds

keystroke rhythm may recognize a malicious access to theagse In this paper we discussed the analytical aspects of loT.\te-i
count. The method treats a keyboard as a device and its keys daced a novel information theoretic multivariate changtecteon
sensors. The sensor values are key press times and keyergieas  algorithm which allows fast online parallel implementatid he al-
for each symbol. This way entering a password of 10 symbesldt®  gorithm is designed and implemented to satisfy the requéremof
is processed as a 21-dimensional sensor output of a device. the 10T cloud analytics platform.

A challenge of a security application is that a user may be at- We provided a theoretical background of the method and per-
tacked soon after the sign up to a site. Therefore the chaege dformed numerous simulated experiments, followed by a realdv
tection method cannot assume a long history of refereneefda  data application to the keystroke dynamics security. Thergdhm
specific user. From the other hand, if the credentials aterstthen  demonstrated a state-of-the-art performance both in tefrhiggher
the attack should be detected as soon as possible. This tieii@s  detection rate and more stable false alarm rate.
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