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ABSTRACT

Internet of Things (IoT) is one of the main technological trends in
the recent years. It allows machine-to-machine communication over
the internet. Almost each device may transmit information from its
sensors over the web to enable centralized insights derivation in an
appropriate cloud architecture.

In this paper we review analytical aspects of the sensory infor-
mation processing. We emphasize the importance of multisensory
approach, in which the joint distribution of all sensors values of a
device is used to derive insights out of the stream of sensorydata.
We introduce a novel information theoretic multivariate change de-
tection method based onk-nearest neighbor (kNN) estimation. The
algorithm is designed and implemented to satisfy the requirements of
IoT for fast online parallel multisensory information processing. We
provide a numerical evidence of the validity of the proposedmethod
on simulated and real world data.

Index Terms— Internet of Things, Change detection

1. INTRODUCTION

Change detection is an important statistical method for detecting
changes in a system. The method monitors data streams from sen-
sors embedded in a device. If the values significantly changeover a
period of time the method outputs an alert. This is a widely needed
capability in IoT where a vast amount of devices should be moni-
tored in the unsupervised way.

In this paper we introduce the novel method of Information The-
oretic Multivariate Change Detection (ITMCD) for multisensory in-
formation processing in IoT. The method was developed and im-
plemented in an IoT cloud computing platform. The method alerts
about a change in a device behavior by monitoring sensor values
samples in a sliding time window of a fixed length in an online
manner. If the multivariate joint distribution of sensors values in
the beginning of the time window differs significantly from the joint
distribution of the sensors values in the end of the window then the
method detects a change. To measure the difference between these
multivariate distributions we apply nonparametric estimators of rel-
ative entropy based on k-nearest neighbor calculations [2].

The rest of the paper is organized as follows. In section 2 we
review challenges of information processing in the IoT domain. Sec-
tion 3 describes the proposed algorithm ITMCD in detail. Section 4
is devoted to conducted numerical experiments.

2. INFORMATION PROCESSING IN IOT

2.1. IoT Cloud Analytics Platform Characteristics

The Internet of Things domain serves a large variety of verticals with
significantly different types of data and different peculiar character-
istics. For example, the stationary sensor signals are frequent in the
manufacturing, whereas daily periods of activity characterize human
generated data in healthcare and wearable industries. Therefore an
analytical method applicable in an IoT cloud cannot rely on aspe-
cific data pattern and should be adaptive to a new data shape. An
additional practical consequence of this variety is the lack of the su-
pervision information available for the algorithm setup because it
is impossible to develop a universal flow for label information treat-
ment. The setup stage therefore is limited to collecting device sensor
values for a certain period of time and deriving general insights of
their distribution.

Real time insights are of special value in many important use
cases, including medical and security applications. This raises im-
portance of algorithms that may run in an online manner, providing
most updated insights about devices. This requirement combined
with Big Data nature of large scale computations emphasizesthe
need for easy parallelizable algorithms which run in a real time with
small latency. For example, if an online algorithm operateson a slid-
ing time window of samples then an inherent latency is induced by
the length of the time window. Hence algorithms employing shorter
time windows are beneficial.

The cloud platform should provide valuable information to a
user, reporting about true events occurring in an environment of a
device. The false alarm rate of an algorithm is the crucial parame-
ter influencing the user experience and the added value of thewhole
analytics platform. The false alarm rate should be tunable to adapt
to a specific user capacity to react to an alert. In particular, the sta-
bility of the false alarm during the running time of an algorithm is a
crucial aspect of the algorithm suitability for deploymentin a cloud
analytics platform.

Typically an IoT cloud platform serves not a single instanceof
a device, but a set of similar devices. As an example, the platform
may serve a fleet of manufacturing tools in a semiconductor fabri-
cation plant performing a same operation. As another example, the
platform may collect and process information from cars of a spe-
cific model, produced by the same manufacturer. In these cases the
cloud computing platform may benefit from aggregating information
transmitted by a subset of devices. Statistical insights derived from
this information may then be applied to the whole family of devices,
thus leveraging the Big Data nature of cloud computing in IoT. As a
consequence, a data processing algorithm in IoT analytics platform
benefits from being extendable to a multidevice mode.
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2.2. Multisensory IoT information processing

In many use cases in IoT a device is equipped with several sensors,
each of them is able to capture a specific characteristics of environ-
ment. For instance, a manufacturing tool may contain a temperature
sensor, a pressure sensor, a humidity sensor, whereas a wearable may
be equipped with an accelerometer and a GPS sensor. In security
domain, multivariate behavioral and biomechanical aspects of a spe-
cific user activity session, such as typing dynamics may be recorded
and transmitted for an online authentication in a cloud. A real world
phenomenon in a device environment usually manifests itself in a
variety of physical aspects.

In all these situations the ability to gain insights from multisen-
sory information by analyzing joint distribution of devicesensors is
beneficial. First, the multisensory treatment allows to amplify a sig-
nal from a real phenomenon by taking into account multiple sources
of information. Small changes in individual sensor values may be
treated as insignificant, however processing such individual sensors
as a combination may reveal a significant event. Second, there are
changes in the device behavior that cannot be detected in individ-
ual sensor levels. For example, a change in a correlation pattern
between two sensors of a device may witness a significant change
in the system behavior however it cannot be traced inspecting indi-
vidual sensors only. An IoT information processing algorithm will
therefore benefit from being able to process a multisensory output.

2.3. Change detection aspects for IoT

Change detection methods aim to detect consistent changes in a dis-
tribution of random variables over a certain time period [3]. As we
discussed above due to high variability of possible data patterns no
prior parametric form can be assumed for sensor values distribution.
It means that change detection algorithms should be appliedin two
sample mode. In this model distributions of sensor values before
and after a suspected change are unknown and a distance between
them should be measured in a nonparametric way. Then a changeis
detected if the distance is above an appropriate threshold.

A well-known algorithm for change detection is Kolmogorov
Smirnov Test [4] which employs estimation of empirical distribu-
tions of the sensor values before and after the change. The KSuses
a maximal absolute difference between curves of empirical distribu-
tions as a statistic and assumes the continuity of these distributions.
Under the null hypothesis that the both distributions are equal this
statistic has a known Kolmogorov distribution regardless of the un-
derlying sensor values distributions. Using this Kolmogorov distri-
bution a desired false alarm rate may be easily tuned. However the
KS may be applied only to one-dimensional random variables,hence
it cannot be used in multisensory information processing directly.

A number of recent multivariate change detection algorithms
employ One Class Support Vector Machines (OCSVM) for multi-
variate probability distribution estimation. For example, General-
ized Kolmogorov Smirnov Test [5] applies OCSVM for the recov-
ery of level sets of a multivariate distribution and then utilizes one-
dimensional KS. The online kernel change detection algorithm [3]
includes learning two OCSVMs followed by distance measure.The
common drawback of these algorithms with regard to IoT is theneed
to perform OCSVM model learning as a condition for the changede-
tection. The OCSVM model learning is computationally expensive
since it involves solving a quadratic optimization problem. Even
more important, it requires a large number of data points forthe
model training, that is an order of magnitude bigger than a number
of sensors in device. From the point of view of IoT these algorithm
pose a significant computational load on the cloud platform and do

not allow fast online change detection due to the large number of
time points required for training.

The algorithm of Maximum Mean Discrepancy [6] involves a
kernel evaluation on each pair of samples for considered time win-
dow. This would pose a hard computational load on the cloud as
well. In addition, the performance of the algorithm is affected by
a choice of a specific kernel, which can negatively impact thero-
bustness of the method with regard to IoT. Finally, the bootstrapping
based [7] change detection leads to complexkdq-tree computations,
which are not appropriate for practical implementations inthe real-
time parallel cloud architecture.

3. ITMCD ALGORITHM

A change detection method in IoT runs over a stream of sensorsval-
uesXt = Xt

1, ..., X
t
d, whered is a number of sensors in a device

and t is a time index. We assume that all sensor values are sam-
pled equidistantly. To detect a consistent change in the behavior
of the device at a reference timet0 a time window of sensor val-
ues around this time momentXt

−p , ..., Xt0 , ..., Xtf is processed.
We denote byp the amount ofd-dimensional samples prior to the
reference time, andf is the amount of samples after the reference
time. A change is detected if the distribution of points in the Past
P ∼ Prob(Xt|t ∈ [−p, ...,−1]) is significantly different from the
distribution of points in theFuture F ∼ Prob(Xt|t ∈ [1, ..., f ]):

D(P ||F ) > T (1)

whereD is a distance between distributions andT is a threshold, that
defines both detection rate and false alarm rate of the method. As a
consequence, a change detection method is defined by a choiceof
a distanceD and a way to determine a thresholdT . As discussed
above, cloud analytics platform requirements do not allow to as-
sume any parametric form of distributions, so the distance estimation
should be performed in a nonparametric way:

D(P ||F ) ≈ D̂(Xt
−p , ..., X

t
−1 ||Xt1 , ..., X

tf ) (2)

We proposed to use the relative entropy as a measure of dissimilar-
ity between distributions. This information theoretic quantity also
known as Kullback Leibler divergence is widely used as a distance
between distributions.

D(P ||F ) =

∫
P (x) log

P (x)

F (x)
(3)

This metric may be estimated in a nonparametric manner [8].
Thek-th Nearest Neighbor (kNN) technique provides a convenient
and computationally fast way for the estimation. Denote an Eu-
clidean distanceg for a d-dimensional vectorXi from the Past to
its nearest neighborXj in the Past as

ρp(i) = min
j 6=i|i,j<0

g(Xi
, X

j) (4)

We also define the distance ofXi to its nearest neighborXl in the
Future as

νf (i) = min
l=1,...,f

g(Xi
, X

l) (5)

Then the estimator of [2] is given by

D̂p,f =
d

p

p∑
i=1

log
νf (i)

ρp(i)
+ log

f

p− 1
(6)
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The authors [2] established asymptotic unbiasedness and mean-
square consistency of the estimator (6). The same proofs could be
applied to obtaink-nearest neighbor version of the estimator:

D̂
k
p,f =

d

p

p∑
i=1

log
vkf (i)

ρkf (i)
+ log

f

p− 1
(7)

The relative entropy is not symmetrical with respect to distri-
butionsP andF , so we apply symmetrization to get a final score
functionS for our change detection method:

S = D̂(Xt
−p ..X

t
−1 ||Xt1 ..X

tf ) + D̂(Xt1 ..X
tf ||Xt

−p ..X
t
−1)

(8)
Calculating the scoreS requires finding thek-th nearest neigh-

bor for each point in the time window. The computational complex-
ity of this computation isO(n log n) for a time window of lengthn
[9]. After the k-th nearest neighbors are found, the rest of compu-
tations is performed in linear time. The overall computational com-
plexity of scoreS calculation is thereforeO((p+ f) log (p+ f)).

After we defined the score to be computed, we introduce a way
to compute a thresholdT that ensures a desired false alarm rateα.
We utilize the algorithm setup time to collectR reference time points
X1, ..., XR. These reference time points represent a regular device
behavior therefore we may calibrate a false alarm rateα on them.
We apply a sliding time window scoreS computation to the data,
that results in values of scoresSs, s ∈ [1, ..., R − p − f ]. We sort
these values in descending order to obtain a monotonic decreasing
sequencêS1 ≥ Ŝ2 ≥ ... ≥ ŜR−p−f . Then the following choice of
thresholdT ensures the desired false alarm rate:

T = Ŝ
[α(R−p−f)] (9)

where[α(R − p − f)] is the closest integer toα(R − p − f). As
a last remark, the sensor valuesX1, ..., Xd may have different dy-
namic ranges, therefore a contribution of a sensor with the highest
nominal values may dominate in the score computation. To equalize
the contributions of sensors a preprocessing stage may be required.
We linearly scale each sensor to bring its values to zero meanand
unit variance:

X̂i = ki ∗Xi + bi (10)

The constant multiplicativeki andbi additive factors are cali-
brated during the algorithm setup, and applied during the algorithm
run time. The algorithm, which we dub Information TheoreticMul-
tivariate Change Detection (ITMCD), is summarized in Figure 1.

The resulting algorithm satisfies all the requirements of a change
detection algorithm for an IoT cloud analytics platform. This mul-
tivariate method does not assume any assumptions on data pattern,
runs in a purely unsupervised mode and allows a fast online parallel
implementation. It is implemented in parallel Map-Reduce architec-
ture and deployed in an IoT Cloud Analytics Platform.

The ITMCD algorithm is readily extendable to the multidevice
mode. Suppose we have a family of devicesΘ, such that a multi-
sensory data stream of deviceθ ∈ Θ is given byXt

θ ∈ Rd. Data
streams of a subset of devicesΘ ⊂ Θ are observed during the setup
stage and a thresholdT (θ) (9) is calibrated for each deviceθ ∈ Θ.

To detect a change in a devicêθ ∈ Θ with a data streamXt

θ̂

not observed in the setup stage (θ̂ 6∈ Θ) we need to compute the
corresponding thresholdT (θ̂). Similarity of devices inside family
Θ allows to replace the unknown threshold by its expectation.As-
suming that the subsetΘ is representative this expectation may be
estimated by averaging thresholds calculated in the setup stage:

T (θ̂) ≈

∫
T (θ)dΘ ≈

∫
T (θ)dΘ ≈

1

|Θ|

∑
T (θ) (11)

Setup.
Input: Sensor valuesX1, ..., XR ∈ ℜd, false alarm rate

α, k, past and future time window lengthsp andf

Output: ThresholdT
Method:

• Compute scoreS (8) for each sliding time window of
lengthp+ f + 1 in reference data

• Sort score values in a decreasing order

• Determine a threshold valueT according to (9)

Run time.
Input: T , k, a time window of sensor values
Xt

−p , ..., Xt0 , ..., Xtf ∈ ℜd

Output: Decision whether a change occurred at timet0
Method:

• Compute scoreS (8) for the input values

• Alert about a change ifS > T

Fig. 1. The ITMCD algorithm

Table 1. Performance on 1D Gaussian data
Change α KS F KS E ITMCD F ITMCD E
µ+ = 1 0.1% 0.04% 13.1% 0.09% 13.9%
µ+ = 1 1% 0.5% 32.6% 0.6% 34.3%
µ+ = 2 0.1% 0.04% 87.1% 0.06% 92.1%
µ+ = 2 1% 0.6% 94.0% 0.8% 96.0%
σ+ = 1 1% 0.7% 1.5% 1.2% 6.3%
σ+ = 2 1% 0.4% 2.5% 1.1% 13.2%
σ+ = 3 1% 0.6% 3.6% 0.9% 26.4%

4. EXPERIMENTS

4.1. Simulated data

We performed a number of comparative experiments with the
ITMCD algorithm. First, we evaluated its performance on sim-
ulated data in comparison with the well established Kolmogorov
Smirnov (KS) test. Since the Kolmogorov Smirnov Test is limited
to one-dimensional inputs, we simulated a number of Gaussian dis-
tributed sequences with zero mean and unit variance. At sometime
point the parameters of the distribution were changed either in terms
of meanµ or in terms of standard deviationσ. The task was to detect
the change with a predefined false alarm rateα. A better change
detection method should have a higher detection rate (E) andkeep
the false alarm rate (F) closer toα in the run time. We fixed the
future window sizef = 10 and used a larger past time window size
p = 50 for smallα = 0.1%, whereas a smaller past time window
sizep = 30 was used for a largerα = 1%. The kNN parameter was
set tok = 8. The results are summarized in Table 1.

We observed that larger window sizes lead as expected to better
performance of both KS and ITMCD. The detection rate of ITMCD
is generally higher than that of KS, especially with regard to de-
tection of standard deviation changes. Also ITMCD exhibitsmore
stable false alarm rate, which is an important advantage in IoT.

Our next numerical simulations were dedicated to the multivari-
ate case. The task was to detect a change of a correlation coefficient
of 2D Gaussian data. We compare ITMCD with MMD. To ensure
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Table 2. Performance in a keystroke security application
α w MMD F MMD E ITMCD F ITMCD E

0.5% 2 NA NA 0.6% 40.2%
1% 2 NA NA 0.7% 46.7%
2% 2 NA NA 1.0% 58.1%
3% 2 NA NA 1.8% 65.4%
4% 2 NA NA 2.7% 70.9%
5% 2 NA NA 3.0% 72.9%
10% 2 NA NA 8.6% 84.2%
0.5% 3 NA NA 1.5% 61.7%
1% 3 1.6% 0 1.8% 65.5%
2% 3 1.6% 0.1% 2.5% 71.3%
3% 3 1.6% 0.2% 3.0% 72.2%
4% 3 1.6% 1.3% 4.3% 74.5%
5% 3 1.6% 3.1% 5.6% 76.8%
10% 3 1.9% 59.3% 9.5% 82.7%
0.5% 5 NA NA 7.0% 88.1%
1% 5 1.6% 45.7% 2.4% 91.1%
2% 5 1.7% 81.0% 3.1% 92.7%
3% 5 1.7% 86.8% 3.6% 96.6%
4% 5 1.8% 91.3% 6.1% 97.7%
5% 5 1.9% 92.2% 6.2% 97.7%
10% 5 2.0% 92.8% 10.8% 98.5%

a fair comparison we used windows of sizes 120, where after 110
points a change of correlation coefficientρ from 0 to 0.9 might oc-
cur. ITMCD used the first 100 points as a reference setup data,then
it was applied in run time to remaining 20 points with both thepast
window sizep and the future window sizef equal to 10. MMD used
all 120 points as an input, and aimed to detect a change between first
110 points and remaining 10 points. We used a range of predefined
false alarms and built Receiver Operating Curves (ROC) for both
methods. The results of 1000 repetitions are summarized in Figure
2. ITMCD demonstrated a better ROC curve in the whole range of
tested detection and false alarm rates.

4.2. Real world data security application

We demonstrate a security application of the proposed method. We
used keystroke dynamics data [10] to distinguish people by their typ-
ing rhythms. A digital fingerprint would tie a person to a computer-
based crime in the same manner that a physical fingerprint ties a
person to the scene of a physical crime.

In the context of a typical security application a user registers
in a site and types a password. Entering the site next times the
user is required to type the password again. If the users credentials
were stolen then a hacker would attempt to enter the site withthem.
During these attempts the password would be entered in a different
rhythm. Therefore a change detection method applied to credentials
keystroke rhythm may recognize a malicious access to the user ac-
count. The method treats a keyboard as a device and its keys as
sensors. The sensor values are key press times and key release times
for each symbol. This way entering a password of 10 symbols results
is processed as a 21-dimensional sensor output of a device.

A challenge of a security application is that a user may be at-
tacked soon after the sign up to a site. Therefore the change de-
tection method cannot assume a long history of reference data for a
specific user. From the other hand, if the credentials are stolen, then
the attack should be detected as soon as possible. This meansthat a
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Fig. 2. ROC of correlation change detection for 2D Gaussian data

change detection should be used with the smallest possible time win-
dow. In addition, the algorithm setup cannot be applied to a specific
user.

In this case the ITMCD method was applied in the multidevice
mode. ITMCD learns only a threshold for an allowed dissimilarity
between keystroke dynamics of a specific user. The method does
not learn a specific pattern of keystroke times for each user in the
setup time, such adaptation occurs automatically in the runtime.
Therefore the threshold of dissimilarity between the keystroke times
may be learned once per a sensitivityα and window sizesp andf
by averaging appropriate thresholds learned for a set of users. Then
this threshold (11) may be applied in a run time for other users.

In the data set we had 400 keystroke times sequences for each
of 50 users. We divided the users into two subsets. The first subset
of 40 users was used for the threshold calibration procedure. The
other subset of 10 users were used for emulating an attack in the fol-
lowing way. A user performed ap accesses for a site, then another
user enters the sitef times. The algorithm is applied to the resulting
window of p+ f 21D keystroke timings in order to detect a change
with a predefined false alarmα. Here we used the symmetrical win-
dow sizesw = p = f . The kNN parameter was set tok = 1. The
ITMCD was compared with the MMD method and the results are
summarized in Table 2.

Almost for the whole range of tested parameters the perfor-
mance of ITMCD is significantly better. ITMCD is able to produce
a reliable results even for the most challenging short time window
cases. From the other hand the MMD method often collapses for
small time windows and does not return meaningful results. ITMCD
demonstrated an adequate performance for this security application.

5. CONCLUSIONS

In this paper we discussed the analytical aspects of IoT. We intro-
duced a novel information theoretic multivariate change detection
algorithm which allows fast online parallel implementation. The al-
gorithm is designed and implemented to satisfy the requirements of
the IoT cloud analytics platform.

We provided a theoretical background of the method and per-
formed numerous simulated experiments, followed by a real world
data application to the keystroke dynamics security. The algorithm
demonstrated a state-of-the-art performance both in termsof higher
detection rate and more stable false alarm rate.
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