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ABSTRACT
In this paper, a communication-efficient multi-processor com-
pressed sensing framework based on the approximate mes-
sage passing algorithm is proposed. We perform lossy com-
pression on the data being communicated between processors,
resulting in a reduction in communication costs with a minor
degradation in recovery quality. In the proposed framework,
a new state evolution formulation takes the quantization er-
ror into account, and analytically determines the coding rate
required in each iteration. Two approaches for allocating the
coding rate, an online back-tracking heuristic and an optimal
allocation scheme based on dynamic programming, provide
significant reductions in communication costs.

Index Terms— lossy compression, multi-processor ap-
proximate message passing, rate distortion function.

1. INTRODUCTION

Compressed sensing (CS) [1,2] has numerous applications in
various areas of signal processing. Due to the curse of dimen-
sionality, it can be demanding to perform CS on a single pro-
cessor. Furthermore, clusters comprised of many processors
have the potential to accelerate computation. Hence, multi-
processor CS (MP-CS) has become of recent interest [3–5].

We consider MP-CS systems comprised of two parts: (i)
local computation (LC) is performed at each processor, and
(ii) global computation (GC) obtains an estimate of the un-
known signal after processors exchange the results of LC.
In our previous work [6], we developed an MP-CS frame-
work based on the approximate message passing (AMP) al-
gorithm [7], in which a GC approach performs AMP in an
MP system, providing the same recovery result as centralized
AMP. We chose AMP, because it is analytically tractable due
to the state evolution (SE) [8, 9] formalism, and can be ex-
tended to Bayesian CS [9, 10], matrix completion [11], and
non-negative principal component analysis (PCA) [12].
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Compared with many results on distributed computation,
optimization, and network topology [3,13] in MP-CS, a mod-
est subset of the literature considers the communication costs
of the GC step [4, 5, 14, 15]. In this paper, we still consider
multi-processor AMP (MP-AMP), and focus more on the
communication costs. In contrast to our prior work [6], we
are willing to accept a minor decrease in recovery quality
while providing significant and often dramatic communi-
cations savings. Such results are especially well-suited to
clusters where communication between servers is costly. To
achieve the reduction in communication costs, we use lossy
compression to reduce the inter-processor communication
costs, and provide a modified SE formulation that accounts
for quantization error. Two approaches for allocating the
coding rate, an online back-tracking heuristic and an optimal
allocation scheme based on dynamic programming, provide
significant reductions in communication costs. Furthermore,
we consider Bayesian AMP, which achieves better recovery
accuracy than non-Bayesian AMP [7] by assuming that the
unknown signal follows a known prior distribution.

In the following, bold capital and bold lower-case letters
are used to denote matrices and vectors respectively, capital
letters without bold typically refer to dimensionality or ran-
dom variables, and [·]T denotes vector or matrix transposi-
tion. The `2 norm of a vector is denoted by ‖ · ‖, N (µ, σ2)
is a Gaussian distribution with mean µ and variance σ2, and
U [a, b] is a continuous uniform distribution within [a, b].

2. THE CENTRALIZED AMP ALGORITHM

Approximate message passing (AMP) [7] is a statistical algo-
rithm derived from the theory of probabilistic graphical mod-
els [16]. Given noisy measurements y = As0 + e of the
unknown signal s0 ∈ RN , where elements in s0 are indepen-
dent and identically distributed (i.i.d.) realizations of a scalar
random variable S0 ∼ pS0 , A ∈ RM×N is the sensing ma-
trix with entries ∼ i.i.d. N (0, 1/M), and e ∈ RM is additive
measurement noise, which is i.i.d. N (0, σ2

e), AMP iteratively
recovers s0, starting from an initial estimate x0 = 0 and resid-
ual z0 = y:

ft = xt + AT zt, (1)
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xt+1 = ηt(ft), (2)

zt+1 = y −Axt+1 + (N/M)η′t(ft)zt, (3)

where t is the iteration number, the bar above the vector in (3)
denotes its empirical average, ηt is known as the denoising
function or denoiser, and η′t denotes its derivative.

According to Bayati and Montanari [9], as N → ∞ and
M/N = κ > 0, the elements of ft in (1) follow i.i.d. Ft =
S0+σtZ, whereZ ∼ N (0, 1) and the sequence {σ2

t } satisfies
σ2
t+1 = σ2

e + (1/κ)E [ηt(S0 + σtZ)− S0]
2

= σ2
e + (1/κ)E‖xt+1 − s0‖2/N.

(4)

Note that σ2
0 = σ2

e + (1/κ)E [S0]
2; equation (4) is known as

state evolution (SE), and the optimal denoiser for mean square
error (MSE) is the conditional mean [9, 17]:

ηt(Ft) = E [S0 |S0 + σtZ = Ft ] . (5)

In this paper, we assume that S0 follows the Bernoulli
Gaussian distribution:

pS0
(s) = εN (s;µs, σ

2
s) + (1− ε)δ(s), (6)

where δ(s) denotes the Dirac delta function, and S0 typically
has mean µs = 0. The denoiser is easily derived using (5).

As a measure of the measurement noise level and recovery
accuracy, we define the signal-to-noise-ratio (SNR) as

SNR = 10 log10

(
E
[
‖As0‖2

]
/E
[
‖e‖2

])
≈ 10 log10

(
E
[
‖s0‖2

]
/E
[
‖e‖2

])
= 10 log10

(
ρ/σ2

e

)
,

where ρ = ε/κ, and the signal-to-distortion-ratio (SDR) at
iteration t as

SDR(t) = 10 log10

(
E
[
‖s0‖2

]
/E
[
‖xt − s0‖2

])
.

Using the SE equation in (4), we have
SDR(t) = 10 log10

[
ρ/
(
σ2
t − σ2

e

)]
.

Note that the Bernoulli Gaussian assumption in this paper is
only for illustration, and our work is easily extended to other
prior distributions pS0

.

3. MULTI-PROCESSOR AMP FRAMEWORK

3.1. Communication in Multi-Processor AMP

Consider a system with P processors and one fusion cen-
ter. Each processor p ∈ {1, · · · , P} takes M/P rows of A,
namely Ap, and obtains yp = Aps0 + ep. The procedures in
(1) — (3) can then be rewritten in a distributed manner:

Local Computation (LC) performed by each processor p:

zpt = yp −Apxt + (1/κ)η′t(ft−1)zpt−1,

fpt = xt/P + (Ap)T zpt .

Global Computation (GC) performed by the fusion center:

ft =

P∑
p=1

fpt , η
′
t(ft), and xt+1 = ηt (ft) .

It can be seen that in the GC step of MP-AMP, each pro-
cessor p sends fpt to the fusion center, and the fusion center
sums them to obtain ft and xt+1, and sends xt+1 to each pro-
cessor.1 Our goal in this paper is to reduce these communica-
tion costs while barely impacting recovery performance.

Suppose that all the elements in fpt are computed as 32-bit
single-precision floating-point numbers. Because SE is robust
to small perturbations [7, 8], we can compress fpt lossily up
to some reasonable distortion level, and send the compressed
output to the fusion center. To ensure that this error is indeed a
“small perturbation,” we require the error to be additive and,
if possible, white and Gaussian, so that we can analyze the
relationship between the error and coding rate.

3.2. Lossy Compression of fpt

Before we propose specific lossy compression approaches,
we describe an important property of MP-AMP. In addition
to the well-known Gaussianity of the vector ft − s0 [9], nu-
merical results show that elements of fpt − (1/P )s0 are also
i.i.d. Gaussian with mean 0 and variance σ2

t /P . Furthermore,
fpt − (1/P )s0 and fqt − (1/P )s0 are independent for differ-
ent processors p and q. In light of this property, fpt can be
described as a scalar channel:

F p
t = S0/P + (σt/

√
P )Zp, where Zp ∼ N (0, 1).

For the Bernoulli Gaussian distribution (6),
F p
t ∼ εN

(
µs/P, (σ

2
s + Pσ2

t )/P 2
)

+ (1− ε)N
(
0, σ2

t /P
)
.

Scalar Quantization: Next, we propose a uniform quan-
tizer with entropy coding, also known as entropy coded scalar
quantization (ECSQ) [18].

Let Ψ(u) denote the characteristic function of F p
t , it can

be shown that
|Ψ(u)| ≤ ε exp

[
−0.5

(
σ2
s + Pσ2

t

)
u2/P 2

]
+ (1− ε) exp

(
−0.5σ2

t u
2/P

)
≤ exp

(
−0.5σ2

t u
2/P

)
is nearly band-limited. Due to this property, it is possible to
develop a uniform quantizer of fpt ∼ i.i.d. F p

t , where the
quantization error vp

t is approximately statistically equivalent
to a uniformly distributed noise V p

t ∼ U [−0.5∆Q, 0.5∆Q]
uncorrelated to F p

t . Actually, a quantization bin size ∆Q ≤
2σt/
√
P will suffice for validation of vp

t ∼ i.i.d. V p
t [19].

The fusion center will receive the quantized data f̃pt ∼
i.i.d. F̃ p

t , and calculate f̃t =
∑P

p=1 f̃pt ∼ i.i.d. F̃t, where

F̃t =

P∑
p=1

F̃ p
t = Ft + Vt, and Vt =

P∑
p=1

V p
t . (7)

Applying the central limit theorem, Vt approximately follows
N (0, Pσ2

Q) for large P , where σ2
Q = ∆2

Q/12.
Entropy Coding and Optimum Bit Rate: Let pi be the
probability that F p

t falls into the i-th quantization bin. The en-
tropy of quantized F p

t , F̃ p
t , is HQ = −

∑
i pi log2 (pi) [20],

1In order to calculate each zpt+1, the fusion center also needs to send

η′t(ft) to all the processors. This is a scalar, and the corresponding commu-
nication cost is negligible compared with that of transmitting a vector.
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that is, the sensors need HQ bits on average to present each
element in f̃pt to the fusion center, which is achievable through
entropy coding [20].

In rate distortion (RD) theory [20], we are given a length-
n random sequence Yn = {Yn,i}ni=1 ∼ i.i.d. Y , and our goal
is to identify a reconstruction sequence Ŷn = {Ŷn,i}ni=1 that
can be encoded at low rate while the distortion d(Yn, Ŷn) =
1
n

∑
i d(Yn,i, Ŷn,i) (e.g., squared error distortion) between

the input and reconstruction sequences is small. RD theory
has characterized the fundamental best-possible trade-off be-
tween the distortion D = d(Yn, Ŷn) and coding rate R(D),
which is called the rate distortion function. The RD func-
tion R(D) can be computed numerically (cf. Blahut [21] and
Arimoto [22]). For the uniform quantizer that yields a quanti-
zation MSE of σ2

Q with a coding rateHQ bits per element, the
RD function will give a bit rate R(D = σ2

Q) < HQ, which is
achievable through vector quantization [18].
New SE Equation: For both ECSQ and RD-based vector
quantization that lead to a quantization MSE of σ2

Q, the fu-

sion center will have F̃t = S0 +
√
σ2
t + Pσ2

QZ̃, where Z̃ ∼
N (0, 1). The new denoiser and SE equation become

ηQt (F̃t) = E
[
S0

∣∣∣S0 +
√
σ2
t + Pσ2

QZ̃ = F̃t

]
and

σ2
t+1 =σ2

e+(1/κ)E
[
ηQt

(
S0 +

√
σ2
t + Pσ2

QZ̃
)
−S0

]2
. (8)

Currently, we only consider compression of fpt . When
broadcast from the fusion center to the P processors is al-
lowed in the network topology, the communication cost of
sending xt – even uncompressed – is smaller than that of
communicating the P vectors fpt . We are considering the case
where broadcast is not allowed in our ongoing work.

3.3. Online Back-tracking (BT-MP-AMP)

Let σ2
t,C and σ2

t,D denote the σ2
t obtained by centralized AMP

(4) and MP-AMP (8), respectively. In order to reduce com-
munication while maintaining high fidelity, we first constrain
σ2
t,D so that it will not deviate much from σ2

t,C , and then de-
termine the minimum coding rate required in each iteration.
This can be done through an online back-tracking algorithm,
which we name BT-MP-AMP and present below.

In each iteration t, before quantizing fpt , we first compute
σ2
t+1,C for the next iteration. Then we find the maximum

quantization MSE σ2
Q allowed so that the ratio σ2

t+1,D/σ
2
t+1,C

does not exceed some constant, provided that the required bit
rate does not exceed some threshold. Based on the obtained
σ2
Q we construct the corresponding quantizer.

Note that the SE in (8) is only an approximation, and we
do not know the true value of σ2

t,D in the current iteration. To
better predict σ2

t+1,D, we use σ̂2
t,D = ‖zpt ‖2/M , which is a

good estimator for σ2
t,D [8, 9], to compute σ2

t+1,D. To obtain
σ̂2
t,D, each processor p sends the scalar ‖zpt ‖2 to the fusion

center, which then sends the scalar σ̂2
t,D =

∑P
p=1 ‖z

p
t ‖2/M

to all the processors. The corresponding communication cost
is also negligible compared with that of communicating fpt .

3.4. Dynamic Programming (DP-MP-AMP)

While back-tracking is a useful heuristic, it is possible for a
given coding budget R per element, total number of AMP it-
erations T , and initial noise level σ2

0 in the scalar channel to
compute the coding rate allocations among the AMP itera-
tions that minimize the final MSE, σ2

T,D.
To do so, note that we can evaluate σ2

t,C offline and hence
obtain the number of iterations required to reach the steady
state, which would be a reasonable choice for T . Second,
recalling the new SE equation in (8), σ2

t,D depends on σ2
t−1,D

and σ2
Q, which is a function ofRt, the coding rate allocated in

the t-th iteration. Therefore, we can rewrite σ2
t,D as follows:

σ2
t,D = f1(σ2

t−1,D, Rt) = f2(σ2
t−2,D, Rt−1, Rt)

= · · · = ft(σ
2
0 , R1, · · · , Rt−1, Rt),

(9)

that is, given σ2
0 , σ2

T,D is only a function of Rt for t ∈
{1, 2, · · · , T}. Denoting FT (R) = {R1, · · · , RT ≥ 0:∑T

t=1Rt = R}, minimizing σ2
T,D for a given R can be

formulated as the following optimization problem:

min
FT (R)

σ2
T,D = min

FT (R)
fT (σ2

0 , R1, · · · , RT ). (10)

Since σ2
t,D is increasing with σ2

t−1,D, it is easy to verify the
following recursive relationship:

min
FT (R)

σ2
T,D = min

0≤RT≤R
f1

(
min

FT−1(R−RT )
σ2
T−1,D,RT

)
= · · · ,

which makes the problem solvable through dynamic program-
ming (DP).

To implement DP, we need to discretize FT (R) into
{R1, · · · , RT ∈ Ω :

∑T
t=1Rt = R}, where Ω = {R(1), · · · ,

R(S)} with R(s) = R(s − 1)/(S − 1), ∀s ∈ {1, · · · , S}. In
this paper, we set the bit rate resolution ∆R = R/(S − 1) =
0.1 bits per element. Then, we create an S × T array Σ, with
the element in the s-th row (s ∈ {1, · · · , S}) and t-th column
(t ∈ {1, · · · , T}) denoted as σ2

D(s, t), storing the optimal
value of σ2

t,D when a total of R(s) bits per element are used
in the first t iterations. By definition of σ2

D(s, t), we have

σ2
D(s, t) = min

r∈{1,2,··· ,s}
f1

(
σ2
D(r, t− 1), R(s−r+1)

)
, (11)

and the first column of elements in Σ is obtained by:

σ2
D(s, 1) = f1

(
σ2
0 , R

(s)
)
, ∀s ∈ {1, 2, · · · , S}. (12)

After obtaining Σ, the optimal value of σ2
T,D, by definition,

is σ2
D(S, T ). Meanwhile, to obtain the optimal bit allocation

strategy, we need another S × T array R to store the optimal
bit rateRDP (s, t) that is allocated at iteration twhen a total of
R(s) bits per element are used in the first t iterations. Similar
to BT-MP-AMP, we name the proposed MP-AMP approach
combined with DP as DP-MP-AMP.
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Fig. 1. SDR and bit rates as functions of iteration number t. (N=10,000,M=3,000, κ=0.3, µs =0, σs =1, SNR=20 dB.)

Table 1. Total bits per element of MP-AMP
ε 0.03 0.05 0.10

T 8 10 20

BT-MP-AMP (RD prediction) 33.82 46.43 96.16

BT-MP-AMP (ECSQ simulation) 36.09 49.19 101.50

DP-MP-AMP (RD prediction) 16 20 40

DP-MP-AMP (ECSQ simulation) 18.04 22.55 45.10

4. NUMERICAL RESULTS

We evaluate BT-MP-AMP and DP-MP-AMP in an MP sys-
tem with P = 30 processors at SNR= 20 dB, where we
set N = 10,000, M = 3,000, i.e., κ = 0.3, and generate
Bernoulli-Gaussian sequences s0 with ε ∈ {0.03, 0.05, 0.1},
µs = 0, and σs = 1.

We first evaluate the SE equation (4) of centralized AMP
for the three sparsity levels. As shown in Fig. 1, they reach
the steady state after T = 8, 10, and 20 iterations respectively.
Then, we run BT-MP-AMP and DP-MP-AMP, where for the
latter the total rates are R = 2T bits per element and the RD-
function models the relation between Rt and σ2

Q.
According to RD theory, in the high rate limit, we should

expect a gap of roughly 0.255 bits per element between the
entropy and RD function for a given distortion level [18].
Therefore, in an implementation of DP-MP-AMP where we
apply ECSQ, we add 0.255 bits per element to the results in
each iteration obtained by DP. Note that the two solid curves
in the top three panels are obtained through offline calculation
and optimization, and the two dash-dotted curves are obtained
through AMP simulations.

As shown in Fig. 1, BT-MP-AMP uses fewer than 6 bits
per element in each iteration, more than 80% communication
savings compared with 32-bit single-precision floating-point
transmission, while achieving almost the same SDR’s as in
centralized AMP. On the other hand, there are clear gaps be-
tween the SDR’s of DP-MP-AMP and centralized AMP dur-
ing the first few iterations, but they vanish quickly as t ap-
proaches T , in return for over 50% communication reduction
beyond that provided by BT-MP-AMP, as shown in Table 1.

Note also that the ECSQ implementation of DP-MP-AMP
has lower SDR’s than that predicted by DP results based on
the RD function at the beginning. This is because the 0.255-
bits gap only holds in the high rate limit. However, due to the
robustness of SE to disturbances, and the increasingly high
rates as t approaches T , the ECSQ implementation matches
the predicted DP results at the last iteration.

5. CONCLUSION

In this paper, we proposed a multi-processor approximate
message passing framework with lossy compression. We
used a uniform quantizer with entropy coding to reduce
communication costs, and reformulated the state evolution
formalism while accounting for quantization noise. Com-
bining the quantizers and modified state evolution equation,
an online back-tracking approach and another method based
on dynamic programming determine the coding rate in each
iteration by controlling the induced error. The numerical re-
sults suggest that our approaches can maintain a high signal-
to-distortion-ratio despite a significant and often dramatic
reduction in inter-processor communication costs.
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