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ABSTRACT
We present a fast adaptive PARAFAC decomposition algo-
rithm with low computational complexity. The proposed
algorithm generalizes the Orthonormal Projection Approxi-
mation Subspace Tracking (OPAST) approach for tracking a
class of third-order tensors which have one dimension grow-
ing with time. It has linear complexity, good convergence
rate and good estimation accuracy. To deal with large-scale
problems, a parallel implementation can be applied to reduce
both computational complexity and storage. We illustrate
the effectiveness of our algorithm in comparison with the
state-of-the-art algorithms through simulation experiments.

Index Terms— Tensor decomposition, 3-way tensors,
adaptive algorithm.

1. INTRODUCTION

Processing streaming massive volume data with time con-
straints is crucial in many applications such as communica-
tion [1], biomedical imaging [2], and statistical signal analy-
sis [3]. The data might be in a multidimensional form (typi-
cally, one of the dimensions is time) and can be naturally pre-
sented by multiway arrays (tensors). Tensor decomposition
thereby provides an important tool to analyze, understand or
eventually compress the data.

One of the most widely-used tensor decomposition is the
Parallel Factor Analysis (PARAFAC) because it can be con-
sidered as a generalization of the Singular Value Decompo-
sition (SVD) for multiway arrays. Moreover, PARAFAC is
unique under mild conditions (i.e., up to scale and permuta-
tion) without imposing constraints such as orthogonality, non-
negativity, or sparseness.

However, algorithms for PARAFAC are usually high
computationally demanding. In an adaptive signal process-
ing context, it leads to a need for fast tracking techniques.
Surprisingly, there exist only a few adaptive PARAFAC algo-
rithms in the literature. Adaptive algorithms for third-order
tensors which have one dimension growing in time were first
proposed by Nion and Sidiropoulos [1]. Their algorithms are
adaptive techniques which are developed based on simulta-
neous diagonalization [4] (PARAFAC-SDT), and on mini-
mization of weighted least squares criterion [5] (PARAFAC-
RLST). Another recent work was also proposed by Mardani,
Mateos and Giannakis [2], but for incomplete streaming in-
stead of full data.

It is observed that the above-mentioned algorithms have
quadratic computational complexity per time instant; that is,
given a streaming tensor X (t) ∈ RI×J(t)×K , where dimen-
sions I and K are fixed and dimension J grows with time,

their complexity is O(IKR2), where R is the tensor rank.
This cost, however, might be a serious handicap in real-time
applications.

In this paper, we generalize the orthonormal projection
approximation subspace tracking (OPAST) approach [6] for
tracking the loading factors (components) of third-order ten-
sors which have one dimension growing with time. In partic-
ular, we efficiently exploit the slowly time-varying assump-
tion and the Khatri-Rao product structure of the adaptive
PARAFAC model to gain advantages in terms of estimation
performance and computational complexity. As a result, the
proposed algorithm, namely three-dimensional orthonormal
projection approximation subspace tracking for third-order
tensors (3D-OPAST), yields linear computational complexity
in a standard setup while having comparable or even superior
performance to the state-of-the-art algorithms.

2. BATCH AND ADAPTIVE PARAFAC

2.1. Batch PARAFAC

Consider a tensor X ∈ RI×J×K , its PARAFAC decomposi-
tion can be presented as

X =
R∑

r=1

ar ◦ br ◦ cr (1)

which is a sum of R rank-one tensors and R is called to be
tensor rank. Here, the symbol ◦ defines the outer product. The
set of vectors {ar}, {br} and {cr} can be grouped into the
so-called loading matrices A = [a1 · · ·aR] ∈ RI×R, B =
[b1 · · ·bR] ∈ RJ×R, and C = [c1 · · · cR] ∈ RK×R. In
practice, (1) is only an approximate tensor, i.e.,

X =
R∑

r=1

ar ◦ br ◦ cr +N , (2)

where N is a noise tensor. Thus, given a data tensor X , the
PARAFAC decomposition tries to achieve an R-rank best
approximation. Equation (1) can also be rewritten in matrix
form as

X(1) = (A�C)BT , (3)

where � refers to the Khatri-Rao product (or the column-
wise Kronecker product) and X(1) ∈ RIK×J whose entry
X

(1)
(i−1)K+k,j = xijk. We can write analogous expressions for

X(2) and X(3) [1]. The PARAFAC decomposition is generi-
cally unique if it satisfies the following condition [7], [1]:

2R(R− 1) ≤ I(I − 1)K(K − 1), R ≤ J. (4)
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2.2. Adaptive PARAFAC

For adaptive PARAFAC decomposition of third-order tensors,
the dimensions of X are growing with time; i.e., X (t) ∈
RI(t)×J(t)×K(t) in the general case. However, in this work,
we consider the case where only one dimension changes in
time, for example J(t), while the other two dimensions are
fixed.

To directly compare our proposed algorithm with those
in [1], we follow their basic model and assumptions. Partic-
ularly, the matrix representation of the adaptive PARAFAC
model is presented as

X(1)(t) ' H(t)BT (t) (5)

where H(t) = A(t) � C(t) ∈ RIK×R, B(t) ∈ RJ(t)×R.
Considering the model at two successive times, t − 1 and t,
we have

X(1)(t) = [X(1)(t− 1),x(t)], (6)

where x(t) ∈ RIK is a vectorized representation of new data
concatenated to X(1)(t − 1). If we assume that A and C
follow an unknown slowly time-varying model (i.e., A(t) '
A(t − 1) and C(t) ' C(t − 1)), then H(t) ' H(t − 1).
Therefore,

BT (t) ' [BT (t− 1),b(t)T ]. (7)

It means that, at each time, we only need to estimate the row
vector b(t) and append it to B(t− 1) instead of updating the
whole B(t). We also assume that the tensor rank R is known,
and at each time when a new data is added to the old tensor,
the uniqueness of the new tensor fulfills (4). Now we have
enough materials to present our algorithm.

3. ALGORITHM PRINCIPLE

Recall the matrix representation of the PARAFAC model
in (3) without the superscript (1) for simplicity

X = (A�C)BT . (8)

By using matrix factorization [4], (8) can be rewritten as

X = WE,

where
W = (A�C)Q−1, E = QBT ,

for some nonsingular Q. The objective is now to find the am-
biguity matrix Q or Q−1 to recover the Khatri-Rao product
structure H = A�C. Matrix Q can be estimated by solving a
simultaneous diagonalization [4], [8] or non-symmetric joint
diagonalization [9]. Hence, A and C can be found, based on
the following observation of H:

H = A�C = [a1 ⊗ c1 · · ·aR ⊗ cR]

= [vec{c1aT1 } · · · vec{cRaTR}].

Since each column of H has the form of a vectorized rank-
1 matrix, we can achieve ci and ai as left and right singular
vectors of matrix Hi = unvec(ai ⊗ ci). It is straightforward
to obtain B when either Q or Q−1 and E are available.

Table 1: OPAST algorithm

y(t) = WH(t− 1)x(t)

q(t) =
1

β
Z(t− 1)y(t)

γ = 1/(1 + yH(t)q(t))

τ = 1
‖q(t)‖2 (

1√
1+‖q(t)‖2(‖x(t)‖2−‖y(t)‖2)

− 1)

p(t) = W(t− 1)(τq(t)− γ(1 + τ ‖ q(t) ‖2)y(t)) + (1 + τ ‖ q(t) ‖2)γx(t)

Z(t) =
1

β
Z(t− 1)− γq(t)qH(t)

W(t) = W(t− 1) + p(t)qH(t)

Because of its high complexity, applying the above pro-
cedure is not suitable for the adaptive model. In [1], one of
the proposed methods requires sliding-window SVD track-
ing to estimate both the left and right orthogonal subspaces,
W(t) and E(t), and then exploits the block common between
B(t − 1) and B(t) to construct the recursive update of Q(t)
and Q−1(t). We refer the reader to [1] for more details.

In this work, we only track the left orthogonal subspace
W(t) using the OPAST method in [6], and then use orthonor-
mal projection approximation of the two successive subspaces
W(t− 1) and W(t) to find out the recursive update of H(t)
and Q(t). At each step, we preserve the Khatri-Rao product
structure of H(t) by minimizing a cost function that measures
the collinear deviation of sub-vectors inside each column of
H(t). Then, b(t) is estimated by calculating the pseudo-
inverse of H(t) exploiting its reduced rank update structure.
As a consequence, the proposed algorithm has linear compu-
tational complexity of order O(IKR) while sustaining good
performance.

4. ALGORITHM DERIVATION

4.1. Overview of OPAST Principle

Consider the cost function

f(W) = E
{
‖ x(t)−WWx(t) ‖2

}
(9)

= tr
{
Rxx − 2WHRxxW +WHRxxWWHW

}
,

where W is an unitary matrix spanning the principal subspace
of Rxx = E{x(t)xH(t)}. Minimizing (9) yields the abstract
form of the OPAST [6] as follows (using informal notation)

W(t) = RxxW(t− 1)[WH(t− 1)RxxW(t− 1)]−1

W(t) = W(t)[WH(t)W(t)]−1/2 (10)

Equation (10) is an orthogonalization of W(t). By using the
projection approximation, i.e., W(t) ' W(t − 1), a fast
implementation of the algorithm has been derived in [6] and
summarized in Table 1.

4.2. 3D-OPAST

In this section, we assume that A(t−1), B(t−1) and C(t−1)
are available, as well as their related matrices H#(t− 1) and
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H(t− 1). We then build on the projection approximation ap-
proach to construct the recursive update expressions for A(t),
B(t) and C(t). Our algorithm can be summarized in four
steps as follows: (i) given x(t), estimate W(t) using OPAST;
(ii) estimate H(t) from W(t) and Q(t − 1) by iteratively
minimizing a criterion which measures its deviation from a
Khatri-Rao structure; (iii) extract A(t) and C(t) from H(t);
and (iv) update the estimate of H(t) and its pseudo-inverse
and calculate bT (t). We now consider these steps in detail.

Step 1: Estimate W(t)

To estimate W(t), at time instant t, we run the OPAST algo-
rithm as described in Table 1.

Step 2: Estimate H(t) from W(t) and Q(t− 1)

At this step, ideally, we want to recover H(t) which “pre-
serves” the Khatri-Rao product structure. To this end, we first
consider the following expression:

H(t) = W(t)Q(t)

' [W(t− 1) + p(t)qT (t)][Q(t− 1)(I+ ε(t)), (11)

where we use last equation of OPAST and the updating rule

Q(t) ' Q(t− 1)(I+ ε(t)), (12)

where ε(t) is an R × R unknown matrix. The objective is to
find ε(t) which imposes the Khatri-Rao product structure on
H(t). We note that finding entries of ε(t) all at once leads
to a computational complexity of order O(IKR2). Instead,
to preserve the linear complexity, we choose ε(t) to be zero
except for its j-th column vector (j = t mod (R)), i.e.,

ε(t) = [0 εj 0] = εje
T
j , (13)

where εj is j-th column of ε(t) and ej is the unit vector whose
j-th entry is one. Substitute (13) into (11) yields

H(t) 'M(t) + (M(t)εj)e
T
j , (14)

where

M(t) = [W(t− 1) + p(t)qT (t)][Q(t− 1)

= H(t− 1) + p(t)q̃T (t), (15)

with q̃(t) = QT (t− 1)q(t). Therefore, only the j-th column
of H(t) is affected by εj according to

hj(t) 'mj(t) +M(t)εj (16)
h1
j (t)
. . .

hi
j(t)
. . .

hI
j (t)

 '

m1

j (t) +M1
j (t)εj

. . .
mi

j(t) +Mi
j(t)εj

. . .
mI

j (t) +MI
j (t)εj

 (17)

where hi
j(t) and mi

j(t) (i = 1, . . . , I) are K × 1 sub-vectors
of hj(t) and mj(t), and Mi

j(t) are sub-matrices of M(t).
Observed that two successive sub-vectors hi

j(t) and
hi+1
j (t) are collinear by following the definition of H(t) =

A(t)�C(t). Thus, preserving the collinear subvectors inside
each column of H(t) corresponds to imposing the Khatri-Rao
structure on H(t).

Before proceeding further, we define the following cost
function which measures the deviation from the collinear
condition of two vectors u = [u1, . . . , uI ]

T and v =
[v1, . . . , vI ]

T :

f(u,v) =
I−1∑
i=1

(uivi+1 − viui+1)
2 + (uIv1 − vIu1)2. (18)

Let ũ = DIu = [aI , a1, . . . , aI−1]
T , where DI is a down-

shift permutation matrix [10]. The cost function (18) can be
written as f(u,v) =‖ ũ ∗ v − ṽ ∗ u ‖2, where ∗ refers to
the Hadamard product (elementwise product). Thus, we min-
imize the following cost function:

minεj
∑I−1

i=1 ‖ h̃i
j ∗ h

i+1
j − h̃i+1

j ∗ hi
j ‖2 + ‖ h̃I

j ∗ h1
j − h̃1

j ∗ hI
j ‖2.
(19)

To solve (19), we used a first order linearization (expansion)
in term of εj . By this way, εj is computed by solving an
R × R linear system1. Once we have εj , the j-th columns of
H(t) and Q(t) are updated using (12) and (16) respectively.

Step 3: Extract A(t) and C(t) from H(t)

At this step, we use the same method as [1] (i.e., a single Bi-
SVD iteration [11]) to extract A(t) and C(t) from H(t)

ai(t) = HT
i (t)ci(t− 1), ci(t) =

Hi(t)ai(t)

‖ Hi(t)ai(t) ‖
, (20)

for i = 1, . . . , R.

Step 4: Estimate H#(t) and bT (t)

By combining (13), (14) and (15), H(t) reveals a rank-2 up-
date structure

H(t) = H(t− 1) + p(t)q̃T (t) + z(t)eTj ,

where z(t) = M(t)εj . Thus, given the knowlege of H#(t−
1), we can use the matrix inversion lemma to calculate H#(t)
with a linear complexity.

Initialization

In our simulation, we choose to capture J0 slices, then run
the batch PARAFAC algorithm to obtain initial estimation.
J0 can be chosen to be the smallest number satisfying the
uniqueness condition in (4).

Remark 1: A better estimate of b(t) and H#(t) can be
obtained by using the Khatri-Rao product structure leading to

H#(t) = [AT (t)A(t)∗CT (t)C(t)]−1[A(t)�C(t)]T . (21)

However, such an implementation costs O(IKR2) and is,
thus, disregarded in this paper.

1Due to space limitation, the details of this linearization are omited.

6237



time
0 50 100 150 200 250 300 350 400 450 500

S
T

D
 o

f 
A

10-2

10-1

100
Evolution of STD of A

PARAFAC RLST
PARAFAC SDT
Batch-ALS
3DOPAST

(a) Loading matrix A(t)
time

0 50 100 150 200 250 300 350 400 450 500

S
T

D
 o

f 
C

10-2

10-1

100
Evolution of STD of C

PARAFAC RLST
PARAFAC SDT
Batch-ALS
3DOPAST

(b) Loading matrix C(t)
time

0 50 100 150 200 250 300 350 400 450 500

S
T

D
 o

f 
x

10-2

10-1

100

101
Evolution of STD of x

PARAFAC RLST
PARAFAC SDT
Batch-ALS
3DOPAST

(c) Observation vector x(t)

Fig. 1: Performance comparison of 3D-OPAST with PARAFAC-RLST, PARAFAC-SDT and batch ALS.

Table 2: Experimental parameters
I J0 K R T εA, εC λ σ2

20 50 20 8 500 10−3 0.8 10−3

Remark 2: IfR digital signal processor units are available,
the matrix-vector product can be replaced by vector-vector
products leading the cost of O(IK) instead of O(IKR). If
we consider, for example, the implementation given by the
first equation of Table 1, we can rewrite it as

yi(t) = wH
i (t− 1)x(t), i = 1, . . . , R. (22)

The same procedure can be applied to other equations.

5. SIMULATION

In this section, we compare the performance of the proposed
algorithm to that of the state-of-the-art algorithms in [1].
To have a fair comparison, we use the framework presented
in [1]2. In particular, a time-varying PARAFAC model is
generated at each time instant as follows.

A(t) = (1− εA)A(t− 1) + εANA(t), (23)
C(t) = (1− εC)C(t− 1) + εCNC(t), (24)

where NA(t) and NC(t) are random matrices which have the
same size as A(t) and C(t) correspondingly, εA and εC con-
trol the speed of variation for A(t) and C(t) between two
successive observations. A vector b(t) is generated with i.i.d.
Gaussian entries. Then, the input data x(t) is given by

x(t) = [A(t)�C(t)]bT (t).

Thus, this observation vector follows the model and the as-
sumptions in Section 2.2. Then, the noisy observation is
x̃(t) = x(t) + σ2n(t), where n(t) is the noise vector and
parameter σ controls the noise level. When comparing perfor-
mance of the proposed algorithms with the algorithms in [1],
we keep all their default parameters as offered by the authors.
A summary of the parameters used in the experiments is given
in Table 2.

Performance criterion for the estimation of A(t) and
C(t), is measured by the standard deviation (STD) between

2Matlab program from http://dimitri.nion.free.fr

the true loading matrix and its estimation up to scale and
permutation at each time

STDA(t) = ||A(t)−Aes(t)||F , (25)
STDC(t) = ||C(t)−Ces(t)||F . (26)

For B(t), because of the time-shift structure as presented be-
fore, we verify its performance through x(t), as

STDB(t) = ||x(t)− xes(t)||2. (27)

To highlight the convergence rate of all compared algo-
rithms, we design an experiment as follows: the speed of vari-
ation of A(t) and C(t) (i.e., the value of εA and εC) abruptly
changes at specific time instants while being remained con-
stant in other time instants. This experiment is similar to the
jump scenario to assess the performance of subspace tracking
[12], [13]. We compare four algorithms, PARAFAC-RLST,
PARAFAC-SDT, 3D-OPAST (exponential window is used for
all algorithms) and batch Alternating Least Square (ALS).
The batch ALS is applied repeatedly to streaming tensors and
only serves as “lower bound” for comparison. Among four
algorithms, 3D-OPAST outperforms PARAFAC-RLST and
PARAFAC-SDT and have the performance close to that of
the batch ALS as indicated in Figure 1. Again, we note that
the computational complexity of 3D-OPAST is O(IKR) as
compared toO(IKR2) of PARAFAC-RLST and PARAFAC-
SDT. Moreover, 3D-OPAST also has a better convergence
rate than PARAFAC-RLST and PARAFAC-SDT, as shown
by plots at the abrupt change instant.

6. CONCLUSION

In this paper, we have presented a new adaptive PARAFAC
decomposition algorithm which has a linear computational
complexity. Surprisingly, while enjoying its lower complex-
ity, the proposed algorithm also shows a good performance in
terms of estimation accuracy and tracking ability.
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