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ABSTRACT

We consider the problem of selecting optimal sensor placements.
The proposed approach is based on the sampling theorem of graph
signals. We choose sensors that maximize the graph cut-off fre-
quency, i.e., the most informative sensors for predicting the values
on unselected sensors. We study the existing methods in the con-
text of graph signal processing and clarify the relationship between
these methods and the proposed approach. The effectiveness of our
approach is verified through numerical experiments, showing advan-
tages in prediction error and execution time.

Index Terms— Sensor placement, graph signal processing,
graph sampling theorem, Gaussian process, mutual information

1. INTRODUCTION

Choosing the best sensor placements is one of the fundamental tasks
in sensor networks and is useful for monitoring spatial phenomena
such as temperature sensing [1], indoor air quality, rainfall and smart
grid system [2]. In these applications, we often have to handle large
number of sensors which are distributed nonuniformly.

The sensor locations are usually selected so as to minimize the
number of sensors, or optimize performance for a given number of
sensors, in order to obtain the best prediction of variables on un-
sensed locations. One approach to select optimal sensor locations
assumes that the sensors can capture the data within a fixed dis-
tance of their location [3]. This approach places sensors so as to
cover overall area with the fewest sensors. The problem is formu-
lated as an art-gallery model [3, 4]. Another research assumes that
the spatial phenomena are modeled as a Gaussian process (GP) and
places the sensors at the most informative locations [5, 6]. In [7, 8],
a subset of sensors is determined to minimize entropy of the unob-
served locations, i.e., maximizes uncertainty with respect to existing
observations. In [9], a method that maximizes mutual information
(MI) [10] between the unobserved and observed locations was pro-
posed, where the sensors are placed to reduce the uncertainty of the
unobserved locations. In this paper, we consider the sensor place-
ment problem as an application of the emerging signal processing
technology: graph signal processing [11, 12].

Traditional signal processing is a key to process complex-
structured data but sometimes it has limitations since it usually
considers (discrete) signals on regular grids. In graph signal pro-
cessing, the relationship between data points is represented as edges
in an underlying graph. Therefore, graph signal processing enables
us to efficiently analyze complex, irregular, and high-dimensional
data. It can be used for various applications such as traffic [13],
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learning [14, 15], image [16–18], brain networks [19, 20] and sensor
networks [21].

Existing sensor selection methods, i.e., the entropy and MI cri-
teria, have not been considered from a graph signal processing per-
spective. We show that the sensor placement problem can be in-
terpreted as a graph sampling problem. Therefore, we propose a
sensor selection approach based on the sampling theory for graph
signals [22–28]. Sampling theory for graph signals addresses the
problem of recovering the signals on unknown nodes from only a
part of the samples. If the original signal is band-limited in the graph
spectral domain and its bandwidth is less than the cut-off frequency,
it can be perfectly recovered from the given samples on the subset
of nodes. Our approach regards the sensors and sensor data as nodes
and graph signals, respectively, and selects the sensors so as to max-
imize the cut-off frequency of the selected sensors. It allows us to
reconstruct signals that has higher cut-off frequency than the entropy
and MI criteria. We use greedy heuristics for sensor selection which
are similar to the algorithms optimizing the entropy or MI based cost
functions. Furthermore, we show that the conventional approaches
can be viewed as graph vertex domain operations, but do not provide
easy spectral interpretations, whereas our approach does. We show
the advantages of the proposed method through numerical experi-
ments.

The remaining of this paper is organized as follows. Preliminar-
ies on graph signal processing are summarized in the rest of this sec-
tion. Section 2 gives the problem setting on GP models and reviews
existing approaches for selecting optimal sensor placements. Sec-
tion 3 describes the proposed sensor selection based on graph signal
sampling theory, and clarifies the existing approaches from the per-
spective of graph signal processing. Performance comparisons are
provided in Section 4. Finally, Section 5 concludes the paper.

1.1. Preliminaries

A graph is represented as G = {V, E}, where V and E denote sets
of nodes and edges, respectively. The graph signal is defined as
f ∈ RN . We will only consider a connected, finite, undirected graph
with no multiple edges. The number of nodes is N = |V|, unless
otherwise specified. The (m,n)-th element of the adjacency matrix
A is the weight of the edge between m and n if m and n are con-
nected, and 0 otherwise. The degree matrix D is a diagonal matrix
and its mth diagonal element is D(m,m) =

∑
nA(m,n). The un-

normalized graph Laplacian matrix (GLM) is defined as L := D−A
and the symmetric normalized GLM is L := D−1/2LD−1/2. The
symmetric normalized GLM has the property that its eigenvalues are
within the interval [0, 2]. The eigenvalues of L or L are λi and or-
dered as: 0 = λ0 < λ1 ≤ λ2 . . . ≤ λN−1 = λmax without loss
of generality. The eigenvector ui corresponds to λi and satisfies
Lui = λiui. The eigenvectors U = [u0 . . .uN−1] satisfy UU† =
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IN where ·† is the conjugate transpose of a matrix or a vector and IN
is theN ×N identity matrix. The entire spectrum of G is defined by
σ(G) := {λ0, . . . , λN−1}. The graph Fourier transform is defined
as follows [29, 30]: f(λi) := 〈ui,f〉 =

∑N−1
n=0 u

∗
i (n)f(n), where

·∗ is the complex conjugate. For a vector x ∈ RN and a set A, the
restriction of x to its components indexed by A is denoted by xA.
For a matrix X ∈ RN×N , XAB denotes the restriction matrix of X,
which is obtained from extracting rows indexed by A and columns
indexed by B from X, and XA := XAA.

2. SENSOR POSITION SELECTION

The following problem is considered in this paper. The sets of mea-
sured locations and possible locations are denoted by S ⊆ V and
V = {v0, . . . , vN−1}, respectively. We consider the problem of
finding |S| = F sensors from |V| = N possible locations. We as-
sume that the stochastic graph signal f has the following Gaussian
joint zero-mean distribution [31]:

p(f) =
1

(2π)
N
2 |K|

exp

(
−1

2
fTK−1f

)
, (1)

where ·T is the transpose of a matrix or a vector, K ∈ R|V|×|V| is
the covariance matrix of all locations V , its (i, j)th element isK(i, j)
with a symmetric positive-definite kernel functionK(·, ·), and |K| is
the determinant of K. The GP model is a well accepted model for the
sensor placement problem [1,5,6,9]. The benefit of the GP model is
that, if the signal f is distributed according to a multivariate Gaus-
sian, the marginal and conditional distributions of its subset signal
f(y), where y ∈ V , are also Gaussian whose conditional variance is
σ2
y|S = K(y, y)−KySK

−1
SSKSy . We introduce two state-of-the-art

techniques based on the GP model: Entropy and MI criteria.

2.1. Entropy Criterion

For the entropy criterion, the sensors are selected so that the uncer-
tainty of a measurement with respect to previous measurements is
maximized [7, 8]. The objective function is represented as

S∗ = arg min
S⊂V:|S|=k

H(fSc |fS) = arg max
S⊂V:|S|=k

H(fS), (2)

where Sc = V \ S. Since the problem in (2) is NP-complete, a
greedy algorithm is proposed in [7, 8]. We firstly set S = ∅ and add
a sensor, which ensures the maximum increase of the uncertainty of
the observed sensors, to S from the set of unselected sensors Sc one
by one. The entropy of random variable f(y), where y is the sensor
of interest, conditioned on variable fS is a monotonic function of its
variance: H(f(y)|fS) = 1

2
log(2πe(K(y, y) − KySK

−1
SSKSy)).

Hence, the node that satisfies the following equation is selected at
each step:

y∗ ← arg max
y∈Sc

K(y, y)−KySK
−1
SSKSy. (3)

2.2. Mutual Information Criterion

The MI criterion maximizes the MI between the selected locations
S and unselected locations Sc, i.e., it selects the locations that more
significantly reduce the uncertainty of the rest of the space [9]:

S∗ = arg max
S⊂V:|S|=k

H(fSc)−H(fSc |fS) := MI(S). (4)

Since this problem is also hard to optimize, a greedy method [9] is
used for optimization that adds sensor y∗ to S to maximize the MI
at each step:

y∗ ← arg max
y∈Sc

K(y, y)−KySK
−1
SSKSy

K(y, y)−K
ySK

−1

SS
KSy

, (5)

where S = V \ (S ∪ y).

3. SENSOR POSITION SELECTION USING SAMPLING
THEOREM FOR GRAPH SIGNALS

Optimal sensor selection can be viewed as the problem of selecting
the most informative nodes to reconstruct graph signals, where the
sensors and observed signals are viewed as the nodes and graph sig-
nals, respectively. The connection of nodes can be determined from
the covariance matrix1. We assume that the random signals have
following distributions:

p(f) ∝ exp

(
−
∑
i

∑
j

A(i, j)(f(i)− f(j))2 − δ
∑
i

f(i)2
)

= exp
(
−fT (L + δI)f

)
.

(6)

From (1) and (6), the graph Laplacian matrix can be obtained from
the inverse covariance matrix:

L = K−1 − δI. (7)

The parameter δ prevents the precision matrix from being sin-
gular. The precision matrix has the same set of eigenvectors
{u0, . . . ,uN−1} as the unnormalized graph Laplacian matrix L
with corresponding eigenvalues {σi = 1

λi+δ
}i=0, ..., N−1. Since

u0 = 1N and λ0 = 0, σ0 = 1/δ is the variance of the DC
component of f .

3.1. Selection Algorithm

Our approach uses the sampling theorem of graph signals. It con-
siders the problem of reconstructing the ω-bandlimited graph sig-
nals from their sub-sampled versions [24–27]. The ω-bandlimited
graph signal has zero graph Fourier coefficients corresponding to
the eigenvalues greater than ω: f(λi) = 0 for λi > ω. The space of
all ω-bandlimited signals is called Paley-Wiener space and denoted
as PWω(G) ∈ RN . The cut-off frequency associated with the sub-
set S is a bound on the maximum frequency of a signal that can be
perfectly recovered from the samples on the subset S. Let us de-
note by L2(Sc) the space of signals having zero values on S, i.e., if
φ ∈ L2(Sc) then φ = [f(Sc)T 0T ]T , and by ω(φ) the minimum
eigenvalue of φ that have non-zero graph Fourier coefficients. The
sampling theorem for graph signals is stated as follows.

Theorem 1 (Graph Sampling Theorem [22, Theorem 2]) The
signal on a graph can be perfectly reconstructed from signal values
f(S) on S if and only if f ∈ PWω(G), where

ω < ωc(S) := inf
φ∈L2(Sc)

ω(φ), (8)

and ωc(S) is the exact cut-off frequency.

1We can also use a graph Laplacian estimated directly from prior infor-
mation, if signals do not have the distribution (1).
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The sensors are chosen so as to maximize the cut-off frequency
in the graph spectral domain under the fixed number F of sensors:

S∗ = arg max
S

ωc(S) subject to |S| = F. (9)

We use three techniques for optimizing the cost function (9):
eigenvalue-based [22], singular value decomposition-based [26],
and standard basis-based [27] algorithms (hereafter, they are de-
noted as EV, SVD and SB, respectively). All methods use a greedy
heuristic that adds the sensor that maximizes the cut-off frequency
at each iteration. The set of selected sensors S is firstly initiated to
the empty set. The selection approach of additional node is different
in each method:

a) EV: We add the node y∗ ← arg max
y

[(φ∗k(y))2] where φ∗k

is the eigenvector of (Lk)Sc associated with the minimum
value λ∗min and k ∈ Z+ is a parameter. Each k provides a
trade-off between performance and complexity.

b) SVD: We add the node y∗← arg max
y

σmin(UF (S∪y)) where

σmin(UF (S∪y)) is the smallest singular value of UF (S∪y).

c) SB: We initiate [b0 . . . bN−1] = [e0 . . . eN−1] where
[e0 . . . eN−1] is standard basis of RN . Then, we add the node
y∗ ← arg max

y
|αy|, where uj =

∑
i αibi, uj is the jth

eigenvector of L and j is the number of iteration, and update
by = uy at each step.

In EV, we allow relaxations for the calculation of ωc(S), since find-
ing the exact cut-off frequency requires high computational costs.
The estimated cut-off frequency Ωk(S) for S can be obtained as

Ωk(S) = (λ∗min)
1/k = inf

φ∈L2(Sc)

(
φTLkφ

φTφ

)
. (10)

where λ∗min is the minimum eigenvalue of (Lk)Sc . A large k leads
to the estimated cut-off frequency to be close to the actual band-
width. SVD and SB need to calculate the eigenvectors associated
with the minimumF eigenvalues, which require additional complex-
ity. However, the cut-off frequency of these methods is equivalent to
ωc(S) = λF−1, and therefore, these methods can result in good per-
formance without the approximation of the cut-off frequency of (10)
based on parameter k.

3.2. Relationships with Existing Methods

From the block matrix inversion formula, the inversion of the covari-
ance matrix can be represented as [25]:

K−1 =

[
KSc KScS
KSSc KS

]−1

=

[
K−1
Sc|S −(KSc)−1KScSK

−1
S|Sc

−(KS)−1KT
ScSK

−1
Sc|S K−1

S|Sc

]
,

(11)

where KSc|S = KSc −KScS(KS)−1KT
ScS and KS|Sc = KS −

KSSc(KSc)−1KT
SSc . By using (7) and (11), the graph Laplacian

and the covariance matrix have a following relationship:

LSc + δI = (KSc −KScS(KS)−1KT
ScS)−1. (12)

To clarify the characteristic of conventional approaches from
a graph signal processing perspective, we consider a toy example

(a) (b) (c)

Fig. 1. (a) Original graph. The blue nodes and red node indicate
S and y, respectively. (b) Ly . Ly(y, y) is the total weight of red
dashed edges. (c) L̄y . L̄y(y, y) is the total weight of red dashed
edges.

Fig. 2. Execution time comparison (Average of 10 executions).

shown in Fig. 1. We use a synthesized simple graph in this figure for
the sake of clarity. From (12), we can rewrite the entropy criterion
in (3) as:

y∗ ← arg max
y∈Sc

1

Ly(y, y) + δy
, (13)

where Ly is the Laplacian matrix of the graph having the nodes S ∪
y and the edges between these nodes (Fig. 1 (b)), and δy is the
variance of fS∪y . It can be seen that the entropy criterion selects
a node that has the minimum degree with the selected nodes, i.e.,
the sensor having the weakest connection with selected sensors is
selected. Because of this, the entropy criterion often places many
sensors at the corners or boundaries of the space, as is well known.

The MI criterion in (5) can also be rewritten as

y∗ ← arg max
y∈Sc

Ly(y, y) + δy

Ly(y, y) + δy
, (14)

where Ly is the graph Laplacian containing the unselected nodes Sc

and the edges in Sc (Fig. 1 (c)), and δy is the variance of fSc . It
can be observed that the MI criterion chooses the node that has the
weakest connection with the selected sensors and strongest connec-
tion with the unobserved locations.

Note that the proposed method and the MI criterion select the
same sensor at the first iteration, when we use (7) for constructing
the graph Laplacian. This is because all proposed algorithms se-
lect the node having the maximum element in the eigenvector cor-
responding to the minimum eigenvalue u0(m) =

√
D(m,m) of

the normalized graph Laplacian matrix, i.e., the sensor having the
maximum degree in the graph is selected as the first selected sensor.
On the other hand, the entropy criterion selects a random sensor at
the first iteration, because its cost function in (13) is constant at all
locations. It is interesting to note that the conventional entropy and
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(a) (b) (c)

(d) (e) (f)

Fig. 3. 10 selected locations from 500 locations. The red nodes are
selected sensors. The blue node indicates the first selected sensor.
(a) Entropy (Ω(S) = 0.023). (b) MI (Ω(S) = 0.026). (c) EV with
k = 1 (Ω(S) = 0.026). (d) EV with k = 8 (Ω(S) = 0.030). (e)
SVD (ωc(S) = 0.027). (f) SB (ωc(S) = 0.027).

MI criterion select sensors according to the edge information in the
graph vertex domain, whereas the proposed method selects sensors
while considering the frequency in the graph spectral domain.

4. EXPERIMENTAL RESULTS

The proposed sensor selection is compared with the existing en-
tropy criterion [7, 8] and the MI criterion [9] through numer-
ical experiments. Although the kernel in (1) can be arbitrar-
ily chosen, all experiments use the following stationary kernel2:
K(i, j) = exp (−‖xi − xj‖/θ), where xi ∈ R2 is the coordinate
of the ith node vi and θ is a parameter. θ = 1 is used for all experi-
ments. We do not have a model of covariance because it is assumed
that we do not have other observed data, so we only use distance to
create a graph. All experiments were performed in Matlab R2013a,
running on a PC with Intel Xeon E5 3 GHz CPU and 64 GB RAM.
Matlab toolbox for submodular function optimization [32, 33] is
used for implementations of the entropy and MI criteria. The pro-
posed methods use a graph Laplacian which is constructed by (7)
and removed self loops and negative edges.

We compare the execution time for choosing various number of
locations from randomly generated locations. |S| = |V|/10 sensors
are selected with various number of possible locations V . We ex-
perimentally use k = 8 for EV. Figure 2 shows the execution time
comparison plotted against |V|. From this figure, we can see that the
MI criterion and SVD are very slow. The EV and SB are faster than
the entropy criterion.

Next, we compare the selected sensor positions. In this experi-
ment, 10 sensor locations are selected from 500 randomly generated
locations by using each method. The results of sensor selections
are shown with their (estimated) cut-off frequency in Fig. 3. It can
be seen that both the proposed methods and the MI criterion select
similar locations. As previously mentioned, they selected the same
locations at the first iteration. The selected sensors by using the en-
tropy criterion are placed close to the boundaries of the space.

Finally, we predict graph signal values on the unobserved lo-
cations and compare the reconstruction errors. Tested signals are

2This is one of kernels for the GP model used in [9].

Table 1. Performance Comparison (Average of 500 Tested Signals):
SNR [dB]

|S| 10 20 40 60 80 100
Entropy -2.77 -2.17 0.28 2.02 2.13 5.75

MI 3.44 5.88 7.57 8.75 9.38 10.25
EV 3.52 6.46 7.74 8.53 9.44 10.37

SVD 3.83 5.98 7.55 8.88 9.14 10.29
SB 3.61 6.34 7.86 8.21 8.67 10.31
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Fig. 4. Reconstructed samples from 50 observations using the exact
method. (a) Original signal. (b) Entropy (6.64 dB). (c) MI (9.77
dB). (d) EV (10.82 dB). (e) SVD (11.59 dB). (f) SB (11.52 dB).

randomly generated according to the GP model3 by using GPML
toolbox [34] and are corrupted by the additive white Gaussian noise
with σ = 0.02. We use k = 6 for EV. We select the set of nodes
S from 500 randomly generated locations, set the signals on Sc to
zero and reconstruct the original signals only from the signals on
S. The estimated signal is represented as f = UVRU

−1
SRfS where

R is the set of Laplacian eigenvalues less than the estimated cut-off
frequency Ωk(S) with k = 6 (for existing approaches and EV) or
λF−1 (for SVD and SB).

The average SNRs after 500 independent runs between the pre-
dicted signal and the original signal are shown in Table 1. The orig-
inal signal and signals reconstructed from 50 samples are shown in
Fig. 4. From the experiments, it can be seen that the proposed meth-
ods show better performance than the entropy and MI criteria regard-
less of the number of the observed locations.

5. CONCLUSION

The optimal sensor selection method based on the graph sampling
theorem has been proposed for predicting the signal values on un-
observed locations. We show that conventional methods using the
GP models can be viewed as operations in graph vertex domain. All
the proposed methods achieved better performance than the existing
approaches. Moreover, the EV and SB are much faster than the en-
tropy and MI criteria. As a future work, we will further investigate
the theoretical issues and better reconstruction algorithms.

3We use a Gaussian kernel K(i, j) = exp
(
−‖xi − xj‖2/θ̃2

)
in

this experiment where θ̃ is determined from a training signal f(m) =
sin(xm(1)) sin(xm(2)) in which x is the set of randomly generated two-
dimensional coordinates in [0, 1]× [0, 1].
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