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ABSTRACT

Real-world networks are often cluttered and hard to organize.
Recent studies show that most networks have the community
structure, i.e., nodes with similar attributes form a certain
community, which enables people to better understand the
constitution of the networks. Hitherto, various community
detection methods have been proposed in the literature yet
none of them takes the strategic interactions among nodes into
consideration. Additionally, many real-world observations of
networks are noisy and incomplete, i.e., with some missing
links or fake links, due to either technology constraints or pri-
vacy regulations. In this work, a game-theoretic framework
of community detection is established, where nodes interact
and produce links with each other in a rational way based on
mutual benefits. Given the proposed game-theoretic genera-
tive models for communities, we use expectation maximiza-
tion (EM) algorithm to detect communities. Simulations on
synthetic networks and experiments on real-world networks
demonstrate that the proposed detection method outperforms
the state-of-the-art.

Index Terms— Community detection, game theory,
noisy networks

1. INTRODUCTION

Nowadays, networks are ubiquitous and often cluttered, lead-
ing to difficulties for recognizing patterns and mining knowl-
edge from them. The first step to the understanding of the
network structures is to arrange the networks in an organized
manner: identifying nodes with similar attributes or functions
and combining them together as a community. Given the im-
portance of community structure, various community detec-
tion approaches have been proposed in the literature to iden-
tify meaningful communities in networks [1]. Existing com-
munity detection methods can be categorized into two classes:
graph-theoretic approaches [2–7] and probabilistic generative
models [8–10].

In a real-life network, nodes form links with each other
through intelligent interactions. Users are rational in forming
their social networks, in other words, when deciding whether
to form a link or not, a user will judge if the benefit of this
link is worthy of its cost (efforts and time spent in the rela-

tion). Hitherto, such strategic interactions among nodes have
not been considered in community detection yet. Moreover,
most real-world observations of networks are noisy and in-
complete, i.e., there are missing links and fake links in the
observed graph, due to technological constraints or privacy
regulations. So far, no existing work has studied the commu-
nity detection problem in noisy networks.

In this paper, we propose a game-theoretic framework to
model the interactions among rational nodes in a network
with community structure. The network can be either noise-
less or noisy. The proposed link formation game connects the
observed network structure with the hidden community struc-
ture. The Nash equilibrium (NE) of the noiseless network
game and the subgame perfect equilibrium (SPE) of the noisy
network game are derived. With these equilibria, a game-
theoretic generative model of networks is obtained, according
to which we use expectation maximization (EM) algorithm to
detect communities. To the best of our knowledge, this is the
first work on community detection taking noise effect into ac-
count. The effectiveness of the proposed detection algorithm
is validated through simulations on synthetic networks and
experiments on real-world networks.

2. GAME-THEORETIC GENERATIVE MODEL OF
THE NETWORKS

Game theory is a mathematical tool used to study the strategic
interactions among multiple rational decision makers [11]. In
a network, each node (e.g., users in a social network) can be
modeled as a rational player. The nodes interact with each
other to form links, generating the graph structure that we
observe. The utilities of the interactions depend on the com-
munity affiliations of the nodes.

In the following, we present our proposed game-theoretic
generative models for both noiseless networks and noisy net-
works. Consider a network with N nodes and K communi-
ties. For each user u ∈ {1, 2, ..., N}, we denote the nonneg-
ative vector xu ∈ RK as its community affiliation strength
vector, whose k-th component represents the strength of node
u’s affiliation to community k. The larger a certain entry of
xu, the stronger the affiliation of node u to the corresponding
community.
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Table 1. The utility table of the game for noiseless networks.
HHH

HHu
v

Link Not Link

Link 1, 1 f2(xu, xv), f1(xu, xv)

Not Link f1(xu, xv), f2(xu, xv) 0, 0

2.1. Game for Noiseless Networks

Each pair of nodes interacts with each other to decide whether
to form a link or not. Specifically, when two nodes u, v inter-
act, they play the following game:

• Pure strategies: {Link, Not Link}.

• Mixed strategies: [0, 1], the probability of Link.

• Utility functions:

1. If both nodes choose Link, then each one gets utility
1.

2. If both nodes choose Not Link, then each one gets
utility 0.

3. From node u’s perspective, i) if it chooses Not Link
but its opponent v chooses Link, then it may get some
one-shot information sharing or benefits from v, and
thus gets utility f1(xu, xv); ii) if it chooses Link but
its opponent v chooses Not Link, then it may have
spent some efforts on trying to make this connection
and thus gets (possibly negative) utility f2(xu, xv). We
assume that f1 and f2 are symmetric functions, i.e.,
fi(xu, xv) = fi(xv, xu), i ∈ {1, 2} so that the util-
ity structure of the pair {u, v} is symmetric. The utility
functions are summarized in Table 1.

We note that the above proposed game contains two gen-
eral functions f1 and f2. Different choices for these two
functions lead to different games, and hence different game-
theoretic generative models of the networks. For general
f1, f2, the Nash equilibrium (NE) of the proposed game is
identified in the following proposition.

Proposition 1. In the proposed game for noiseless networks,
suppose f1(xu, xv) < 1, f2(xu, xv) < 0 or f1(xu, xv) >
1, f2(xu, xv) > 0, then choosing the strategy Link with
probability:

p?(xu, xv) =
f2(xu, xv)

f1(xu, xv) + f2(xu, xv)− 1
(1)

is a symmetric mixed-strategy NE.

We assume that two nodes will link with each other if and
only if both of them choose the strategy Link. Hence, at the
NE, the link probability of the node pair (u, v) is:

H(xu, xv) , p?(xu, xv)2 =

(
f2(xu, xv)

f1(xu, xv) + f2(xu, xv)− 1

)2

.

(2)

Table 2. Utility table of the second stage in the game for
noisy networks.

(a) When u, v are linked in the first stage.
PPPPu

v
Truth-telling Not Truth-telling

Truth-telling 1, 1 g2(xu, xv), g1(xu, xv)

Not Truth-telling g1(xu, xv), g2(xu, xv) 0, 0

(b) When u, v are not linked in the first stage.
PPPPu

v
Truth-telling Not Truth-telling

Truth-telling 1, 1 g4(xu, xv), g3(xu, xv)

Not Truth-telling g3(xu, xv), g4(xu, xv) 0, 0

Different utility functions f1() and f2() lead to different link
probability function H(). Two examples of such functions
that satisfy the assumption of Proposition 1 are listed as fol-
lows.

• When f1(xu, xv) =
√

1− exp(−xTuxv) and f2(xu, xv) =
−f1(xu, xv), the link probability function isH(xu, xv) =
1 − exp(−xTuxv), which coincides with the affiliated
graph model (AGM) proposed in [9, 12].

• When f1(xu, xv) =
√

xTuxv
1+xTuxv and f2(xu, xv) =

−f1(xu, xv), the link probability function isH(xu, xv) =
xTuxv

1+xTuxv .

2.2. Game for Noisy Networks

The game-theoretic generative process of the noisy networks
consists of two stages since, in addition to the generative pro-
cess for the noiseless networks, we need another stage to take
the generation of noise into consideration. The first stage is
to determine whether to form a link or not while the second
stage is to decide whether to report the truth about the link
state. The overall utility is the sum of the utilities obtained in
the two stage games. The first stage is the same as the game
for the noiseless networks. Thus, we just focus on the second
stage, which is specified for a node pair (u, v) as follows.

• Pure strategies: Truth-telling and
Not Truth-telling

• Mixed strategies: [0, 1], the probability of
Truth-telling

• Outcome: The true linking state is reported if and only if both
nodes adopt strategy Truth-telling.

• Utility functions: If u, v are linked in the first stage, the util-
ity functions of all possible circumstances are listed in Table
2(a). Similarly, if u, v are not linked in the first stage, the util-
ity functions are listed in Table 2(b). The utility functions gi()
are all symmetric functions, i.e., gi(xu, xv) = gi(xv, xu), i ∈
{1, 2, 3, 4}.

We denote the overall strategy of the formulated two-stage
dynamic game as 〈p, (q1, q2)〉 where p is probability of the
strategy Link in the first stage and (q1, q2) are the probability
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of the strategy Truth-telling in the second stage given
that a link between u, v is formed or not formed in the first
stage, respectively.

Proposition 2. In the proposed dynamic game for noisy net-
works, 〈p?, (q?1 , q?2)〉 is a symmetric mixed-strategy subgame
perfect equilibrium (SPE), where

q
?
1 (xu, xv) =

g2(xu, xv)

g1(xu, xv) + g2(xu, xv) − 1

q
?
2 (xu, xv) =

g4(xu, xv)

g3(xu, xv) + g4(xu, xv) − 1

p
?
(xu, xv) =

f2(xu, xv)

f1(xu, xv) + f2(xu, xv) − 1 − g1(xu, xv)q?1 (xu, xv) + g3(xu, xv)q?2 (xu, xv)

provided that 0 ≤ p?(xu, xv), q?1(xu, xv), q?2(xu, xv) ≤ 1.

Denote Y (u, v), Ŷ (u, v) the binary variable represent-
ing the true link state and the observed noisy link state
between nodes u, v respectively, i.e., “1” represents the
presence of a link while “0” represents no link. Then, at
the SPE 〈p?, (q?1 , q?2)〉, the link probability of nodes u, v is
H(xu, xv) = p(xu, xv)2 while the fake link and missing link
probabilities are:

ε1(xu, xv) , P
(
Ŷ (u, v) = 1|Y (u, v) = 0

)
= 1− q2(xu, xv)2, (3)

ε2(xu, xv) , P
(
Ŷ (u, v) = 0|Y (u, v) = 1

)
= 1− q1(xu, xv)2. (4)

Thus, different utility functions lead to different link proba-
bilities and link error probabilities. Specifically, for any link
probability functionH(), any fake link probability ε1 and any
missing link probability ε2, we can achieve them by setting
the utility functions in the game model as follows:

f1(xu, xv) = (1 + ε1 − ε2)
√
H(xu, xv), (5)

g1(xu, xv) =
√

1− ε2, g3(xu, xv) =
√

1− ε1, (6)
f2(xu, xv) = −f1(xu, xv), (7)
g2(xu, xv) = −g1(xu, xv), g4(xu, xv) = −g3(xu, xv).(8)

Thus, by properly tuning the utility functions as above, the
game-theoretic framework can model a general class of gen-
erative processes of networks with community structure.

3. A GENERAL COMMUNITY DETECTION
ALGORITHM FOR NOISY NETWORKS

In this section, we briefly discuss how to detect communities
in the proposed game-theoretic model. Since noiseless net-
works simply correspond to noisy networks with ε1 = ε2 =
0, we only focus on community detection in noisy networks
from now on in this section. We assume that the link error
probabilities ε1 and ε2 are constants independent of the af-
filiation strength xu. A graphical representation of the pro-
posed game-theoretic generative model for noisy networks is
shown in Fig. 1. For each pair of users u, v with commu-
nity affiliation strength xu, xv , a link between them is formed
with probability H(xu, xv). The link state Y (u, v) can be ei-
ther ‘1’ (linking) or ‘0’ (not linking), with linking probability

ε
1

ε
2

Fig. 1. Graphical illustration of the proposed game-theoretic
generative model.

H(xu, xv), i.e.,

Y (u, v) ∼ Bernoulli(H(xu, xv)). (9)

Afterwards, noise is added in so that the link state Y (u, v) is
flipped with fake link probability ε1 and missing link proba-
bility ε2 to generate the observed link state Ŷ (u, v), i.e.,

Ŷ (u, v) ∼ Bernoulli
(
ε
1−Y (u,v)
1 (1− ε2)Y (u,v)

)
. (10)

We assume that the link error probabilities ε1, ε2 are known.
Our goal is to infer the unknown community affiliation
strength X , {xu}Nu=1, based on which we can do com-
munity detection.

Due to the existence of the latent variables Y (the true
network), direct maximum likehood estimation is intractable.
We thus resort to the expectation maximization (EM) algo-
rithm [13], an efficient algorithm iterating between two steps,
i.e., the expectation step (E-step) and the maximization step
(M-step). Because of space limitation, detailed algorithm is
not presented here.

4. SIMULATIONS AND REAL DATA EXPERIMENTS

In this section, synthetic data based simulations as well as
real data based experiments are conducted to validate the pro-
posed community detection algorithm for the game-theoretic
generative model.

To implement simulations, we synthesize networks with
N nodes and K communities according to the following
procedure. Partition all nodes into K non-overlapping equal
groups of nodes so that each group has N/K nodes. For each
group, randomly pick ηN/K nodes outside of the group and
add these nodes into the group, where 0 < η < 1 is a user-
defined parameter. Each group is defined to be a community.
Choose some community affiliation strength for nodes in the
community. This strength will influence the edge density of
the networks. Generate the links according to the chosen link
probability function H(xu, xv). Add noise into the network
according to the link error probabilities ε1, ε2.

The networks generated in this way have overlapping
community structure. Actually, on average, for each com-
munity, a proportion of 2η/(1 + η) nodes in the community
also belong to other communities. The parameter setup for
the simulation is as follows. We set N = 100, K = 2, 3,
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(a) Detection of community
1 with AGM

(b) Detection of community
1 with the proposed noise-
aware game-theoretic algo-
rithm

(c) Detection of community
2 with AGM

(d) Detection of community
2 with the proposed noise-
aware game-theoretic algo-
rithm

Fig. 2. Synthetic network with missing link probability
ε2 = 0.3: comparison of the two detected communities with
the ground-truth by using the proposed noise-aware game-
theoretic algorithm and the AGM in [9], respectively. Red
nodes: belonging to the community and detected as in the
community; blue nodes: not belonging to the community and
detected as not in the community; green nodes: belonging to
the community but detected as not in the community; black
nodes: not belonging to the community but detected as in the
community. There happens to be no black node in this net-
work instance.

η = 0.1, 0.2, 0.3. For link error probabilities, we select
ε1 = 0.005 and ε2 = 0.1, 0.2, 0.3. The reason is that in
practical networks, most of the link errors are missing links
(incomplete graphs) instead of fake links. For link proba-
bility function, we choose H(xu, xv) = 1 − exp(−xTuxv)
and compare the performance with that of the affiliated graph
model (AGM) proposed in [9]. A visualization of the com-
munity detection results of the proposed method and AGM, a
state-of-the-art community detection algorithm with brilliant
performance, for a synthetic network is presented in Fig. 2.
There are two communities in the network, i.e., community 1
and community 2, whose detection results are shown respec-
tively. We observe that the proposed method outperforms
AGM, especially in community 2 where many undetected
nodes (green nodes) of AGM becomes detected (red nodes)
in the proposed approach.

For a detected community C and a ground-truth commu-
nity C̄, the Balanced Error Rate (BER) between the
two communities is defined to be:

BER(C, C̄) =
1

2

(
|C\C̄|
|C|

+
|C̄\C|
|C̄|

)
. (11)
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(a) η = 0.1,K = 2
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(b) η = 0.2,K = 2
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(c) η = 0.3,K = 2
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(d) η = 0.1,K = 3

0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

Noise level ε
2

B
al

an
ce

d 
E

rr
or

 R
at

e

 

 

AGM
proposed algorithm

(e) η = 0.2,K = 3
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(f) η = 0.3,K = 3

Fig. 3. Comparison between the proposed noise-aware
game-theoretic community detection algorithm and the AGM
method in [9].

Table 3. Relative enhancement of the proposed noise-
aware game-theoretic algorithm over the AGM on real-world
datasets.
hhhhhhhhhhDataset

Noise level ε2 0.1 0.2 0.3 0.4

Facebook ego-network dataset 4.08 % 7.09 % 9.42 % 16.93 %
DBLP dataset 3.90 % 7.55 % 11.49 % 14.07 %

For every detected community C, we calculate minC̄ BER(C, C̄).
For every ground-truth community C̄, we calculate minC BER(C, C̄).
Then, the performance metric is the average of all these min-
imum BER’s. The simulation results for different number of
communities and different community overlapping extent are
shown in Fig. 3, where we compare the proposed noise-aware
game-theoretic algorithm with the AGM in [9]. We find that
the proposed algorithm always outperforms the AGM, and
the performance enhancement increases with the noise level
ε2 (except for networks in Fig. 3-f).

For real data experiments, we consider two datasets: the
Facebook ego-networks dataset [14] and the DBLP collabo-
ration network dataset [15]. Both networks have well-defined
ground-truth communities. The relative improvement of
the proposed noise-aware game-theoretic algorithm over the
AGM is listed in Table 3. Again, the proposed algorithm
always outperforms the AGM and the performance improve-
ment increases with the noise level ε2.

5. CONCLUSION

A game-theoretic analysis of the community detection prob-
lem in both noiseless networks and noisy networks has been
presented, which takes nodes’ rational decision making into
account. The equilibria of the formulated game lead to a
probabilistic generative model of networks with community
structure. Based on the game-theoretic model, we propose a
general community detection algorithm by using an EM al-
gorithm. The effectiveness of the proposed algorithm is vali-
dated by simulations as well as real data experiments.
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