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ABSTRACT
Consider a distributed estimation problem to be carried out by paid
crowdworkers, where results are to be returned quickly and accu-
rately. Estimation accuracy is a function of the number of work-
ers completing the job and of the quality of the workers, both of
which may be influenced by the payment offered. With limited
budget, payment allocation should consider both effects to obtain
best results. Since people are not deterministic, payment offers will
lead to a random number of variable-quality workers, as governed
by choice models. We consider average performance and focus on
estimating a parameter from measurements through uniform noise.
Since we have shown the optimality of the midrange estimator in
specific settings of the general problem, we focus on the best lin-
ear unbiased estimator based on order statistics (BLUE-OS) under
the mean-squared error (MSE) criterion. Best payment allocations
are determined for single crowd platforms, joint population models
and separated platform models. Illustrative numerical examples are
provided.

Index Terms— choice models, crowdsourcing, distributed esti-
mation, resource allocation

1. INTRODUCTION

Dating to Francis Galton accurately estimating the weight of a fat ox
at the 1906 Plymouth country fair using guesses from both amateurs
and experts (like farmers and butchers) competing for a prize [1],
there has been interest in using the wisdom of the crowd for dis-
tributed estimation. In recent times, crowdsourcing through plat-
forms like Amazon Mechanical Turk has become prevalent for es-
timation tasks ranging from participatory infectious disease and ru-
ral crop surveillance [2, 3], to real-time paid crowdsourcing to help
the blind [4], where it is important to get results quickly and accu-
rately. Unlike classical settings of distributed estimation like sensor
networks [5], however, resource constraints are different in human
crowdsourcing. Human workers are governed by choices and de-
sires, which determine how much cognitive energy they will allo-
cate to the task at hand [6]. We consider the classical parallel tree
topology for distributed estimation, rather than requiring all agents
to obtain final estimates [7].

Monetary payment is a standard way to incentivize workers [8]
and changes in rewards have two effects: changing the quality of
work produced [9], and changing the likelihood for the work to be
completed [10, 11] and thereby the quantity. Drawing on much ev-
idence from human experiments, it is now standard to model the
choices of crowd workers by discrete choice models [10], where in-
dividuals act to maximize gain in utility. Workers may have different
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utilities depending on wage, ease, and expected time of tasks [11].
We assume a worker accepts a task when his or her utility exceeds
that of other tasks [11]. If accepted, the quality of work may de-
pend on the worker’s expertise, abilities, motivation, etc. [8]. For
a given payment scheme, we have a random number of variable-
quality workers.

This paper characterizes and optimizes distributed estimation
performance under these novel crowd-based resource constraints.
For concreteness and since it provides a good model for estimating
beliefs, we focus on workers making observations through uniform
noise [12]. For a fixed number of agents (as in classical distributed
estimation), it is well-known that the midrange estimator is optimal
under mean-squared error (MSE) [12–15]. Proof omitted here for
brevity, we have extended this optimality result for a random num-
ber of agents using the theory of order statistics for random number
of variates [16–19]. This theory has been used in reliability engi-
neering [20–22], but not statistical signal processing.

For settings with variable-quality workers, we also focus on esti-
mators that are linear functions of order statistics, which include not
just the midrange, but also the median, mean, and many other typi-
cal location parameter estimators. We find the best linear unbiased
estimator based on order statistics (BLUE-OS) [23].

We also optimize payment allocations for several kinds of plat-
forms: those with equal-quality workers, and those with variable-
quality workers where amateurs and experts can either be specifi-
cally addressed or not (comparisons are also made between the two).
Surprisingly, it is not always best to have as many experts as possi-
ble. Note that even though the number of workers participating will
be a random response to the allocation, once a payment is shown to a
worker, it is considered “spent” whether or not the task is completed.

Though there is prior work on budget allocation for crowdsourc-
ing, it all deals with classification rather than estimation [24–27].

2. RANDOM NUMBER OF EQUAL-QUALITY WORKERS

We are to estimate a parameter θ in a crowdsourcing platform where
worker observations are uniformly distributed on [θ− α

2
, θ+ α

2
], for

some constant α. There are no specific communication constraints
between workers and the platform. The platform uses the midrange
estimator, the average of the minimum and the maximum of the sam-
ple. This is optimal for uniform sources, whether for a fixed or ran-
dom number of variates.

Theorem 1 The best unbiased estimator of the location parameter
from an i.i.d. sequence of uniform observations of fixed or random
length is the sample midrange.

Optimality of the sample midrange estimator for a fixed length sam-
ple is classically known, e.g. [12,13]. The random case follows from
independence, linearity, and the prior fixed-length results.
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By selecting payments ~c (e.g. in cents) with elements in a dis-
crete space C under a fixed budget B, we are to maximize system
performance. The probability a worker will choose to do a specific
task is derived from a conditional logit model of discrete choice. As-
suming the utility of a task is linear in payment c, the task acceptance
probability function follows a multinomial logit distribution [10,11]:

q(c) = exp
{ c
s
− b
}
/ exp

{ c
s
− b
}

+M ,

where the parameters b, s,M are empirically determined.
The allocation of payments among n workers can be expressed

as an allocation vector ~c = {c0, c1, . . . , cn}, where ck is the payment
offered to the kth worker. We define the best allocation ~c∗ as the
allocation which results in the lowest MSE in estimation.

The MSE for a deterministic participation count n is α2

2(n+1)(n+2)

for n ≥ 1, from known results on the midrange [13]. Thus we set
mse(n = 0) = α2/4 for consistency, but this is not critical. The
best allocation, given the constraint

∑N0
i=1 ci = B for any allocation

vector ~c and upper-bounding the population at N0, satisfies:

~c∗ = arg min
~c

N0∑
n=0

α2

2(n+ 1)(n+ 2)
· pN (n;~c),

where the distribution of the random participant count N :

pN (n;~c) = 1
n!(N0−n)!

×

per


q(c1) · · · q(c1) 1− q(c1) · · · 1− q(c1)
q(c2) · · · q(c2) 1− q(c2) · · · 1− q(c2)
...

. . .
...

...
. . .

...

︸ ︷︷ ︸
n

q(cN0) · · · q(cN0) ︸ ︷︷ ︸
N0 − n

1− q(cN0) · · · 1− q(cN0)


is a generalization of the binomial distribution for counting successes
among unequally-likely events, in terms of the matrix permanent.

Theorem 2 The best payment allocation is homogeneous.

Proof of this result follows directly from the following.

Theorem 3 Among allocations of form {x, 2B′ − x, c3, . . . , cN0}
with fixed B′ and ci, i = 3, . . . , N0 and given x, 0 ≤ x ≤ 2B′, the
best allocation occurs only when either x = 0, 2B′, or B′.

To prove this, we note the mse function is continuous. The bound-
ary points when x = 0 or 2B′ can yield maximum or minimum.
Further, we can note that pN (n; ~x) is symmetric about x = B′ since
pN (n; ~B′ − t) = pN (n; ~B′ + t). Therefore, x = B′ is a local ex-
tremum which may also be the global extremum.

The key is showing other points cannot also be minima. First
we consider N0 = 2 and the result for larger N0 will follow from
the base case. Without loss of generality, set α = 1. We will use
the following special property of q(c). Suppose K(B′, p(B′)) is an
arbitrary point on the curve q(c). Then M(B′ − t, p(B′ − t)) and
N(B′ + t, p(B′ + t)) lie on either side of K(t > 0). Thus,

1
t·kKM

− 1
t·kKN

= 1
M

exp{B
′

a
− b} −M exp{b− B′

a
}.

The difference explicitly driven by t (the two slopes are also deter-
mined by t) is a constant depending on B′ without regard to t.

Recall when N0 = 2:

mse(~c) =

2∑
n=0

pN (n;~c)

2(j + 1)(j + 2)
.

Suppose the budget is 2B′ and let ~ct be [B′−t, B′+t], 0 ≤ t ≤ B′.
Then:

∆B′(t) = mse(~ct)−mse(~c0)

= A1(tβ1(t)− tβ2(t))−A2t
2β1(t)β2(t)

where

β1(t) =
q(B′)− q(B′ − t)

t
, β2(t) =

q(B′ + t)− q(B′)
t

A1 = ( 1
4
− 1

12
)(1− q(B′)) + ( 1

12
− 1

24
)q(B′), A2 = 1

4
− 2 · 1

12
+ 1

24
.

Note β1(t) > 0 and β2(t) > 0 for all 0 ≤ t ≤ B′ since q(c) is
monotonically increasing. Therefore,

∆B′(t) = (t2β1(t)β2(t))
[
A1

(
1

tβ2(t)
− 1

tβ1(t)

)
−A2

]
= (t2β1(t)β2(t)) · Const(B′).

When Const(B′) ≥ 0, ∆B′(t) ≥ 0 for all 0 ≤ t ≤ B′, and ~c0 is
the best allocation.

When Const(B′) < 0, we see ~cB′ = {0, 2B′} is the best allo-
cation since

∆B′(B′) = (B′2β1(B′)β2(B′)) · Const(B′)

= [q(B′)− q(0)][q(2B′)− q(B′)] · Const(B′)

≤ ([q(B′)− q(B′ − t)][q(B′ + t)− q(B′)] · Const(B′),

for all 0 ≤ t ≤ B′

= (t2β1(t)β2(t)) · Const(B′) = ∆B′(t).

Hence we have

mse(~cB′) ≤ mse(~ct) for all 0 ≤ t ≤ B′.

Reducing the N0 > 2 case to a summation of many N0 = 2
cases extends the base case. Restricting to homogeneous allocations
(without loss of optimality) simplifies determining best allocations.

3. FIXED NUMBER OF VARIABLE-QUALITY WORKERS

The quality of workers in the crowd may not be equal: some work-
ers may provide better measurements than others, but this may be
controlled through financial incentives [8]. Here we model the qual-
ity of work with uniform distributions of different scales and assume
there are two levels: expert and amateur. Smaller scales yield better
estimates. Contrary to the previous section, we assume fixed task
completion. There are two ways to model platforms with variable-
quality workers: joint population and separated platforms.

3.1. Joint Population Model

The measurements of amateurs and experts are modeled by two uni-
form distributions with support [−1, 1] and [−0.5, 0.5], respectively.
For simplicity of notation, we take parameter θ = 0. The platform
combines reported measurements using the best linear unbiased es-
timator based on order statistics (BLUE-OS) [23], without knowing
which workers are experts and which are amateurs. Since variates
are not identically distributed, results of [23] muat be modified and
so we start from first principles.

Let n be the total number of workers and let m be the number
of amateurs among the n. The marginal pdf of the rth order statistic
from the joint population is derived following [28, Ch. 5] and is given
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f(r)(x) = 1
(r−1)!(n−r)!× r − 1 columns n− r columns (1)

per



F1(x) . . . F1(x) f1(x) 1− F1(x) . . . 1− F1(x)
... (m rows)

...
F1(x) . . . F1(x) f1(x) 1− F1(x) . . . 1− F1(x)
F2(x) . . . F2(x) f2(x) 1− F2(x) . . . 1− F2(x)

... (n−m rows)
...

F2(x) . . . F2(x) f2(x) 1− F2(x) . . . 1− F2(x)



f(r)(s)(x, y) = 1
[(r−1)!(s−r−1)!(n−s)!] × m columns n−m columns (2)

per



F1(x) . . . F1(x) F2(x) . . . F2(x)
... (r − 1 rows)

...
F1(x) . . . F1(x) F2(x) . . . F2(x)
f1(x) . . . f1(x) f2(x) . . . f2(x)

F1(y)− F1(x) . . . F1(y)− F1(x) F2(y)− F2(x) . . . F2(y)− F2(x)
... (s− r − 1 rows)

...
F1(y)− F1(x) . . . F1(y)− F1(x) F2(y)− F2(x) . . . F2(y)− F2(x)

f1(y) . . . f1(y) f2(y) . . . f2(y)
1− F1(y) . . . 1− F1(y) 1− F2(y) . . . 1− F2(y)

... (n− s rows)
...

1− F1(y) . . . 1− F1(y) 1− F2(y) . . . 1− F2(y)



by (1). The joint pdf of the rth and sth order statistics is given in (2).
We can use these distributions to calculate the expected values and
the covariance matrix of the order statistics from the joint population,
which in turn allows us to find the BLUE-OS by optimizing weights
in the summation, and finally its MSE (following [23]). For brevity,
this is all omitted, and we show numerical results.

We show the BLUE-OS MSEs for several values of n and m in
Fig. 1. Observe for sufficiently large n, there is a peak in the graph,
such that maximizing the number of experts is not best. Though,
the position of the peak shifts to the left, i.e. the best fraction of
experts does increase, as n increases. Moreover, the value of the
peak decreases as n increases (estimation accuracy improves with
sample size), but the curves become flatter as n increases, indicating
the quality of the estimator relies less on experts.

The first point is non-intuitive: the estimator may improve if the
number of amateurs in the sample exceeds a threshold m0. In the
m ≤ m0 regime, as the number (and influence) of the amateurs in
the sample increases, the estimator degrades (as expected). When
m exceeds m0, however, measurements from amateurs dominate
the sample distribution, and the distribution become more uniform.
Hence, the BLUE-OS estimates θ more closely, and the dispersion
decreases. Nevertheless, the MSE when m = n (all amateurs) is
always larger than the MSE when m = 0 (all experts).

3.2. Separated Platforms Model

Now suppose we can maintain two separate platforms with experts
and amateurs that can be distinguished from one another. Let the
measurements from these two platforms both be uniform with scale
parameters αA < αB , respectively. Let the budget assigned to the
two platforms be BA and BB , so BA + BB = B. We first charac-
terize MSE for a given payment allocation.

To do so, we should first achieve best estimation given a fixed

number of workers in platforms A and B, as in prior sections, and
base a BLUE-OS solution on that.

Theorem 4 Let θ be a parameter to be estimated in m independent
platforms P1 to Pm, m ≥ 1. Suppose there are Ni independent
observations from Pi, (Xi

1, X
i
2, . . . , X

i
Ni

). Let ei be the BLUE-
OS using the observations of Pi, 1 ≤ i ≤ m respectively. Then,
the BLUE-OS of θ from the m platforms is a linear combination of
ei, 1 ≤ i ≤ m.

For proof, we follow the method of Lloyd [23] to prove there exists
a BLUE-OS estimator for θ. A key is noting the independence of the
different platforms, which leads to block-diagonal covariance.

Since the midrange is the BLUE-OS for a single uniform dis-
tribution, the BLUE-OS for two platforms A and B is a weighted
average of two midrange estimators. Working through derivations, it
turns out the BLUE-OS of θ̂ is

θ̂ =
kA

2(kA + kB)
(Y A1 + Y ANA

) +
kB

2(kA + kB)
(Y B1 + Y BNB

)

with kA = (NA+1)(NA+2)

α2
A

and kB = (NB+1)(NB+2)

α2
B

. The variance
is the MSE, which we can write down and optimize under the budget
constraint (omitted for brevity).

Fig. 2 plots the MSEs with different numbers of amateurs m in
n participants (this can be computed continuously). Again, we ob-
serve the non-intuitive behavior that after a certain threshold m0, in-
creasing the number of amateurs lowers the MSE. For the separated
model, we can take d

dm
mse(n−m,m) = 0 and easily obtain

m0 =
α2
B(2n+ 3)− 3α2

A

2(α2
A + α2

B)
.

Since the extremum exists only when m0 < n, we have the non-
intuitive behavior if 3(α2

B − α2
A)/2α2

A < n.
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Fig. 1. Trends of BLUE-OS MSE under different values of n and m.

Fig. 2. BLUE-OS MSE as continuous function of m (n = 1000).

4. OPTIMIZING QUALITY AND QUANTITY

Now we consider both quality and quantity aspects of payments in
the separated model. As shown, the optimal reward allocation in a
single platform with equal quality workers is homogeneous. It is
clear the problem reduces to finding the optimal [BA

NA
, BB
NB

], where
BA and BB are the budgets allocated to the two platforms respec-
tively, so MSE of the final estimate is minimal.

The algorithm to calculate the optimal budget allocation consists
of several steps:

1. Choose BA, BB .

2. For the allocation, plot a graph of (NA, NB ,mse) and find
the first minimum with reference to MSE.

3. Repeat 1-2 and get the allocation with the lowest MSE.

The process of trying all combinations of BA and BB is in linear
time, but to speed up the calculation further, we notice a useful prop-
erty of the model. We can transform previous results into:

NA∑
i=0

α2
BpN (i;A)

NB∑
j=0

pN (j;B)

2
α2
B

α2
A

(i+ 1)(i+ 2) + 2(j + 1)(j + 2)

The MSE of one platform reduces to the following, when fixing

the number of participants in the other platform:

f(M) =

M∑
j=0

1

k + 2(j + 1)(j + 2)
pN (j).

When k = 0, f(M) reduces to:

f0(M) =
1− (M + 2)q(B0

M
)t+1 − (1− q(B0

M
))t+2

2(t+ 1)(t+ 2)q(B0
M

)2
.

Numerical results show that for k < k0, where k0 is a constant de-
pending on the choice model q(c) and the budget for the platform
B0, the trend of f(M) stays the same, i.e. the extremum occurs for
the sameM . The k0 value can be obtained by testing different values
of k. The allocation of one platform does not affect the best alloca-
tion of the other when k < k0. Therefore, we obtain the optimal M
quickly by finding the minimum of f0(M) using derivatives.

5. CONCLUSION

As crowdsourcing becomes widespread, research challenges arise at
the intersection of signal processing and social networks. Distributed
estimation in sensor networks is limited by noise and bandwidth [5],
but crowdsourcing is limited by human expertise and motivation.
This paper discussed best payment allocations based on order statis-
tics in a single platform with equal-quality workers and presented
two modeling approaches for platforms with variable-quality work-
ers. The separated platforms model performs better since worker
identity information is lost in the joint population model. Algorithms
to find optimal payment allocations in these models were developed.

Although models studied herein are based strongly on actual
real-time crowd-based tasks, formulations can certainly be gener-
alized and applied to other human computation scenarios. Experi-
ments with human subjects, e.g. on Amazon Mechanical Turk, can
also be carried out to verify our theoretical development.

We also note that transmission erasures (i.e. uncompleted work)
in distributed estimation have been considered elsewhere [29] in con-
texts where multiple descriptions encoding is possible [30]. Here we
just considered raw, uncoded crowd results, but the possibility of
coding for crowdsourcing exists too [31]. As part of future work, we
will investigate analog coding for crowd-based estimation.
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