
DATA SKETCHING FOR LARGE-SCALE KALMAN FILTERING

Dimitris Berberidis1 and Georgios B. Giannakis1

1 Dept. of ECE and Digital Tech. Center, University of Minnesota
Minneapolis, MN 55455, USA

Emails: {bermp001,georgios}@umn.edu

ABSTRACT

In an age of exponentially increasing data generation, per-
forming inference tasks by utilizing the available informa-
tion in its entirety is not always an affordable option. The
present paper puts forth approaches to render tracking of
large-scale dynamic processes affordable, by processing a
reduced number of data. Two distinct methods are intro-
duced for reducing the number of data involved per time
step. The first method builds on reduction using low-comple-
xity random projections, while the second performs censor-
ing for data-adaptive measurement selection. Simulations
on synthetic data, compare the proposed methods with com-
peting alternatives, and corroborate their efficacy in terms of
estimation accuracy over complexity reduction.

Index Terms– tracking, dimensionality reduction, cen-
soring, random projections, Kalman filter.

1. INTRODUCTION
Tracking dynamically evolving processes is of paramount
importance in a wide range of applications. In the context
of large scale problems, being able to perform accurate and
economical state estimation may render problems of pro-
hibitive scale feasible. Weather prediction is an example of
tracking a slowly-varying dynamic process, from a massive
volume of observations acquired from fast-sampling sensors
per time interval; see e.g., [1]. Monitoring large and dynam-
ically evolving networks, where nodes may join or leave and
connections may be established or lost as time progresses,
provides an exciting domain in which the acquisition and
processing of network-wide performance metrics becomes
challenging as the network-size increases [2, Ch. 8]. For in-
stance, monitoring path metrics such as delays or loss rates
is challenging primarily because the number of paths gen-
erally grows as the square of the number of nodes in the
network. Therefore, measuring and storing the delays of all
possible source-destination pairs is hard in practice even for
moderate-size networks[2].

Work in this paper was supported by the MURI AFOSR FA9550-10-
1-0567, NIH Grant No. 1R01GM104975-01, and NSF grants 1343860,
1442686, 1500713 and 1514056.

In this context, channel-aware dimensionality reduction
of observations was proposed in [3] and [4] using distributed
wireless sensor networks (WSNs). A posterior-CRLB-based
method to select sensors for tracking tracking was intro-
duced in [5], and a greedy algorithm leveraging submod-
ularity was developed in [6] for measurement selection in
sequential estimation.

The present paper draws on interval censoring to dis-
card “less informative” observations online. Censoring has
recently been employed to select data for distributed param-
eter estimation using resource-constrained WSNs, thus trad-
ing off performance for tractability [7, 8]. Furthermore, cen-
soring has been proposed for signal estimation using WSNs,
for tracking, and control of dynamical processes [9, 10, 11,
12]. However, existing works on censoring mostly focus on
reducing the rate at which sensors communicate their obser-
vations, and pertinent methods exhibit large computational
complexity and storage requirements.

The goal of this paper is to perform reliable tracking us-
ing the Kalman filter (KF), while reducing the amount of
data and the computational complexity involved. Towards
this goal, two algorithms are proposed for dimensionality
reduction and tracking. The first is based on random pro-
jections (RPs) and thus is data-agnostic, while the second
adopts censoring for joint tracking and rejection of “unin-
formative” data (see also our work in [13]). Corroborating
simulations compare with the state-of-the-art greedy mea-
surement selection algorithm, and illustrate the efficiency
of the proposed methods.

2. PROBLEM FORMULATION
Consider the following linear dynamical system model

θn = Fnθn−1 + Gnun + wn (1)
yn = Xnθn + vn (2)

where θn ∈ Rp denotes the state vector at time n; Fn is the
known state-transition matrix;Gn and un are known and
deterministic control-input model and control-input vector
respectively; yn ∈ RD the measurement vector and Xn is
the knownD×pmeasurement matrix; while wn and vn are
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zero-mean, mutually uncorrelated and individually uncorre-
lated across time random noise vectors, with respective co-
variance matrices Qn and Rn. The initial state θ0 has mean
m0, and covariance P0.

Given the information-bearing data In := {yn,Xn,Rn}
of the measurement equation (2) at time n, the most recent
estimate θ̂n−1|n−1 and its covariance matrix Pn−1|n−1, the
celebrated KF yields the minimum mean square error (MMS-
E) optimal estimate θ̂n|n in two steps. First, the state predic-
tion θ̂n|n−1 and its covariance matrix Pn|n−1 are obtained
using the model dynamics {Fn,Qn} as [cf. (1)]

θ̂n|n−1 = Fnθ̂n−1|n−1 + Gnun

Pn|n−1 = FnPn−1|n−1F
T
n + Qn.

Subsequently, as In becomes available, θ̂n|n is obtained as

θ̂n|n = arg min
θ
‖yn −Xnθ‖2R−1

n
+ ‖θ − θ̂n|n−1‖2P−1

n|n−1

.

(4)

The first term of the cost in (4) is a weighted least-squares
term fitting the state θ with In that arises from the linear ob-
servation model in (2); while the second regularization term
corresponds to treating θ̂n|n−1 as a prior of θn. Solving (4)
and applying the matrix inversion lemma (MIL) yields the
well-known KF correction step, e.g., [14, p. 205]

θ̂n|n = θ̂n|n−1 + Kn(yn −Xnθ̂n|n−1)

where the so-termed KF gain Kn and the state covariance
update are given by

Kn = Pn|n−1X
T
n

(
XnPn|n−1X

T
n + Rn

)−1

Pn|n = (Ip −KnXn) Pn|n−1.

A dual form of the KF known as the information filter (IF)
relies on the MIL to offer a more efficient solver of (4) as
D grows large [14, Ch. 7]. Nevertheless, even the low-
complexity IF requires O(Dp2) multiplications to solve (4)
in the case of uncorrelated observations (Rn diagonal), and
O(D2p) in general. Therefore, for large-scale KF problems
where D � p, dimensionality reduction of the datasets In
is an attractive tool for rendering the solution of (4) compu-
tationally tractable, while also reducing other data-related
costs, such as storage and transmission.

Towards this goal, we introduce a reduced-complexity
Kalman-like filter (see Algorithm 1) that extracts a reduced
(size d < D), yet informative dataset Idn := {y̌n, X̌n, Řn}
from the original In, where y̌n ∈ Rd, X̌n ∈ Rd×p and
Řn ∈ Rd×d are the corresponding reduced-dimension ob-
servation vector, measurement matrix, and covariance ma-
trix. Consequently, the problem reduces to the design of
low-complexity sketching modules for informative dimen-
sionality reduction. In the ensuing two sections, a data-
agnostic method based on RPs followed by a data-adaptive
method based on censoring are developed.

Algorithm 1 Reduced-complexity KF

Initialization: θ̂0|0 = m0, P0|0 = P0

for n = 1 : N do
Prediction Step:
θ̂n|n−1 = Fnθ̂n−1|n−1 + Gnun

Pn|n−1 = FnPn−1|n−1F
T
n + Qn

Data Reduction :
{y̌n, X̌n, Řn} = Sketching

(
{yn,Xn,Rn}, θ̂n|n−1

)
Correction Step:
θ̂n|n = θ̂n|n−1 + Kn(y̌n − X̌nθ̂n|n−1)

Kn = Pn|n−1X̌
T
n

(
X̌nPn|n−1X̌

T
n + Řn

)−1

Pn|n =
(
Ip −KnX̌n

)
Pn|n−1

end for

Algorithm 2 RP scetching module
Dimensionality reduction with RPs
y̌n = SdHΛyn

X̌n = SdHΛXn

Řn = SdHΛRn(SdHΛ)T

3. RP-BASED KF
RP-based dimensionality reduction amounts to premultiply-
ing measurements and regressors {yn,Xn} with a random
matrix H, and a diagonal matrix Λ, whose entries take the
values {+1/

√
D,−1/

√
D} equiprobably. The net result is

a linear transformation of the system of equations in which
all rows are of approximately equal importance. A subset of
d rows of the transformed system is then extracted by simple
random sampling, implemented by left multiplication with
a random d×D selection matrix Sd.

Originally developed in the context of linear regression [15,
16], RPs can be readily adapted to reduce dimensionality in
tracking dynamical processes too. Applying the Hadamard
preconditioning and random sampling matrices on (2) yields
the reduced-dimension observation model

y̌n = SdHΛyn = SdHΛ(Xnθn + vn) = X̌nθn + v̌n

where v̌n := SdHΛvn is zero-mean with covariance Řn =
SdHΛRn(SdHΛ)T . Given θ̂n|n−1 and the reduced data
Idn, state estimate θ̂n|n can be obtained similar to (4) as

θ̂n|n = arg min
θ
‖y̌n − X̌nθ‖2Ř−1

n
+ ‖θ − θ̂n|n−1‖2P−1

n|n−1

.

(5)

Solving (5) and applying the MIL gives rise to the novel
RP-based KF, which is equivalent to Algorithm 1 using Al-
gorithm 2 as sketching module.

Implementing RPs can have affordable complexity if
H is chosen to be a pseudo-random Hadamard matrix of
size D. Different from the more elaborate approaches in
[3] and [4], the proposed RP-KF is an easy-to-implement,
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“one-size-fits-all” reduced-complexity tracker, using data-
agnostic dimensionality reduction. Furthermore, RP-KF’s
estimation performance can be guaranteed as asserted in the
ensuing proposition, which provides a benchmark for the
data-driven methods introduced in the following section.1

Proposition 1. With Rn = σ2
nID, let An := [P

−1/2
n|n−1,

σ−1
n XT

n ]T , bn := [P
−1/2
n|n−1θ̂n|n−1, σ−1

n yT
n ]T , and An =

UnSnVT
n . If ‖UnUT

nbn‖2 ≥ γ‖bn‖2 for some γ ∈ (0, 1],
then by choosing d = O(p ln(pD)/ε) the following bound
for the RP-KF estimates holds w.h.p.

‖θ̂n|n − θ̂
?

n|n‖2 ≤
√
ε
(
κ(An)

√
γ−2 − 1

)
‖θ̂

?

n|n‖2

where κ(An) denotes the condition number of An, and
θ̂
?

n|n is the full-data KF estimate.

4. CENSORING-BASED KF
Measurement censoring for estimating dynamical processes
has recently been advocated as a means of reducing the
inter-sensor transmission overhead when WSNs are employed
for distributed tracking [10, 11]; see also [9, 17], where cen-
soring is employed for event-based estimation. Since the
goal in the aforementioned applications is saving communi-
cation resources, censoring is performed solely on measure-
ments yn, with Xn and Rn assumed to be known; thus, in
our notation [10, 9, 17, 8, 11] rely on In := {yn}. A set of
d observations Idn := {[yn]Sn} is obtained, where [yn]i
denotes the i−th element of yn, and Sn ⊆ {1, . . . , D}
denotes a set collecting the indices of uncensored obser-
vations. Given [yn]Sn ,Xn and Rn, [10, 9, 17, 8, 11] de-
velop sequential estimators to optimally estimate θn. In
the context of reducing communicational load, optimal (in
the ML or MMSE sense) estimation from censored obser-
vations comes with complexity comparable to that of using
the full number of measurements.

Since our goal is dimensionality and complexity reduc-
tion, the starting point is on censoring entire rows of the
full dataset Idn := {yn,Xn,Rn}, in order to obtain a re-
duced set Idn := {[yn]Sn , [Xn]Sn , [Rn]Sn}, where [Xn]i
denotes the i−th row of Xn and [Rn]Sn := cov([vn]Sn).
In this context, the goal is to develop censoring rules in or-
der to obtain Sn, so that Idn is an “informative” subset of In.
Most existing censoring schemes consider the innovation
ỹn := yn − Xnθ̂n|n−1 as a measure of information con-
tained in yn. One approach –henceforth referred to as block
censoring (BC)– is to censor the entire vector yn. From an
information-theoretic viewpoint [11], the optimal BC rule
is based on the magnitude of the prewhitened innovation
Σ−1/2

n ỹn, where Σn := cov(ỹn) = XnPn|n−1X
T
n + Rn;

1Detailed proofs are ommited due to space limitation but they will be
included in the journal version of this paper.

thus, Sn is obtained as

Sn :=

{
{1, . . . , D}, ‖Σ−1/2

n ỹn‖2 > τn
∅, otherwise

. (6)

Clearly, having Sn = ∅ corresponds to skipping the cor-
rection step of the KF. A major shortcoming of (6) is the
cubic complexity O(D3) associated with calculating Σn.
Furthermore, BC-KF may only reduce the data cost on av-
erage across iterations by entirely skipping correction steps.

Our idea of a more attractive alternative is to censor sep-
arately each entry of IDn . In our context, entry-wise censor-
ing yields Sn as

Sn := {1 ≤ i ≤ D
∣∣ |[ỹn]i| > τn} (7)

where τn can be designed so that the set cardinality |Sn| ≈
d. Compared to BC-KF, the innovation-based entry-wise
rule of (7) is more flexible in reducing the available data. To
accurately perform measurement selection with (7), |[ỹn]i|
must reflect how informative [yn]i is for the purpose of
tracking θn. Using the predictor-based innovations for this
purpose [ỹn]i := yn−[Xn]i,:θ̂n|n−1 is intuitive, but unsuit-
able for the proposed reduced-complexity KF, since uncen-
sored observations adhere to a highly nonlinear measure-
ment model.

Towards a more suitable censoring rule, the adaptive
censoring least-mean-square (AC-LMS) algorithm we in-
troduced in [18] can be employed to discard uninformative
rows of IDn . Within time slot n, rows of (yn,Xn) are pro-

cessed sequentially; given a temporary estimate θ̂
(i−1)

n|n−1, the
i−th row is discarded when indicated so by the censoring
variable (1. denotes the indicator function)

ci = 1{
∣∣∣[yn]i − [Xn]i,:θ̂

(i−1)

n|n−1

∣∣∣ ≤ τn} (8)

where [Xn]i,: is the i−th row of Xn. If deemed informative
enough, the i−th row is added to the collection Sn, and

subsequently involved in updating θ̂
(i−1)

n|n−1 as

θ̂
(i)

n|n−1 = θ̂
(i−1)

n|n−1 + µ[Xn]i,:

(
[yn]i − [Xn]i,:θ̂

(i−1)

n|n−1

)
.

(9)
The role of the update in (9) is to perturb the censoring
region (slab) towards the direction of ([yn]i, [Xn]i,:), thus
making it less likely for similar points to be obtained; intu-
itively speaking, such updates eliminate redundancies in the
selected data and reduce estimation error. The AC sketching
module is summarized as Algorithm 3, and when plugged
into Algorithm 1, it yields the proposed adaptive censoring
(AC)-KF scheme.

Proposition 2. If wn and vn are Gaussian, then the AC-KF
yields unbiased estimates ∀τ, µ.
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Algorithm 3 AC sketching module
Measurement selection with AC-LMS
Input: θ̂n|n−1, {yn,Xn,Rn}
Initialization: θ̂

(0)

n|n−1 = θ̂n|n−1, S
(0)
n = ∅

for i = 1 : D do
Obtain ci as in (8)
if ci = 0, then
S(i)
n = S(i−1)

n ∪ {i}
Update θ̂

(i−1)

n|n−1 as in (9)
end if

end for
Return :{y̌n, X̌n, Řn} = {[yn]S(D)

n
, [Xn]S(D)

n ,:
, [Rn]S(D)

n
}

Proposition 2, whose proof is omitted due to space lim-
itations, asserts the unbiasdness of AC-KF. Nevertheless,
the variance of AC-KF largely depends on the choice of µ.
Tuning µ to optimize the MSE performance of AC-KF is
a challenging task; the development of accurate rules for
the selection of µ is part of ongoing our research. Never-
theless, even for possibly suboptimal values of µ, the pro-
posed scheme yields promising results. Simulations in Sec-
tion 5 will demonstrate that the proposed AC-KF attains es-
timation accuracy close to that of the KF using the greedy
measurement selection method in [6]. As importantly, the
proposed AC performs a single pass over the data, and re-
quires O(Dp) computations, which is markedly lower than
the O(Ddp2) required to perform greedy selection. Fur-
thermore, AC-KF is suitable for online implementation by
processing rows of IDn sequentially.

5. NUMERICAL TESTS

The novel AC-KF and RP-KF algorithms are tested here on
a simulated linear dynamical system modeling a random
spiral trajectory, which consists of a rotation on the x− y
plane, and a downward movement along the z axis with

Fn =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 az

 , ∀n
where φ determines the angular speed of rotation set to π/60,
and az the rate of descent set to 0.997. The state noise
{wn}Nn=1 was generated i.i.d. with wn ∼ N (0, σ2

wQn),
where [Qn]i,j = 0.5|i−j|, and σw = 0.02. Finally, the
initial state is θ0 ∼ N (m0,P0), with m0 = [1, 1, 10]T

and P0 = 0.09I. Per time instant n ∈ {1, . . . , N} with
N = 100, D = 1, 000 measurements are obtained and con-
catenated in vector yn = XT

nθn + vn, where rows of Xn

are generated as i.i.d. standardized Gaussian vectors. For
this experiment, observations are assumed correlated; thus,
vn ∼ N (0, σ2

vRn), where [Rn]i,j = 0.5|i−j|.
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Figure 1: Average RMSE for AC-KF, Greedy algorithm,
RP-KF and random sampling as a function of data reduction
ratio d/D. (Upper) High SNR case with σ2

v = 25 × 10−4

and (lower) Low SNR case with σ2
v = 1.

To determine the average performance in terms of esti-
mation error and computational complexity of AC-KF and
RP-KF for different values of d/D, 20 Monte Carlo real-
izations were run on the same simulated linear dynamical
system. The experiment was repeated for different levels of
signal-to-noise-ratio (SNR) at the observation model. One
high (σ2

v = 25×10−4) and one low (σ2
v = 1) SNR scenario

are presented here. The estimation performance was mea-
sured in terms of averaged across realizations, root-mean-
square error (RMSE) of the estimates across iterations; that

is, RMSE = N−1
√∑N

n=1 ‖θ̂n|n − θn‖. AC-KF was run
first, with τn = τ tuned so that a constant number of ap-
proximately d observations were selected per time slot.

The average RMSE of the four methods as a function of
d/D is plotted in Figs. 1(a) and 1(b), for high and low SNR,
respectively. These plots confirm that the proposed data-
agnostic RP-KF is useful for increasing the accuracy (com-
pared to plain random sampling) when estimating dynamic
processes. With regards to the more elaborate algorithms,
the proposed AC-KF has comparable performance with the
KF using greedy measurement selection, while being orders
of magnitude faster in terms of runtime. Furthermore, the
gap between estimation accuracy of the two methods closes
as SNR decreases, indicating that the AC-KF is more robust
to noisy observations.
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