
QUICKEST CONVERGENCE OF ONLINE ALGORITHMS VIA DATA SELECTION

Daniel Romero, Dimitris Berberidis, and Georgios B. Giannakis

Department of Electrical and Computer Engineering and Digital Technology Center
University of Minnesota, USA, {dromero,bermp001,georgios}@umn.edu

ABSTRACT

Big data applications demand efficient solvers capable of pro-
viding accurate solutions to large-scale problems at affordable com-
putational costs. Processing data sequentially, online algorithms of-
fer attractive means to deal with massive data sets. However, they
may incur prohibitive complexity in high-dimensional scenarios if
the entire data set is processed. It is therefore necessary to confine
computations to an informative subset. While existing approaches
have focused on selecting a prescribed fraction of the available data
vectors, the present paper capitalizes on this degree of freedom to
accelerate the convergence of a generic class of online algorithms in
terms of processing time/computational resources by balancing the
required burden with a metric of how informative each datum is. The
proposed method is illustrated in a linear regression setting, and sim-
ulations corroborate the superior convergence rate of the recursive
least-squares algorithm when the novel data selection is effected.

Index Terms— Big data, online learning, adaptive data selec-
tion, stochastic approximation.

1. INTRODUCTION

Big data problems are characterized by huge volumes of data that
exceed the available computational capabilities [1]. Time-sensitive
and cost-constrained applications impose stringent requirements that
cannot be met unless optimization tasks are confined to a judiciously
selected subset of the data. Randomized linear algebra [2] and ex-
periment design [3,4] techniques were proposed to minimize the re-
sulting increase in estimation error, but they presume availability of
the entire data set before the selection can commence. This obser-
vation has favored the adoption of online approaches, where each
datum is sequentially visited a single time [5], a feature that makes
them particularly attractive for processing big data streams and even
mining massive data sets.

Online selection rules decide on-the-fly whether each datum
must be processed or ignored based on some prior estimate of how
informative it is. For example, in [6, 7] observations with low inno-
vations are discarded to reduce computational complexity of estimat-
ing linear regression coefficients. Similar principles are exploited
in [6–10], where non-informative observations are censored to min-
imize the communication overhead in bandwidth-constrained sensor
networks. The related randomized Kaczmarz algorithm [11–13]
accomplishes data selection according to the norm of the prediction
vectors, but cannot be implemented in a purely online fashion since
the selection probabilities depend on the norm of all other vectors.

Many problems in big data applications deal with computing so-
lutions that attain the highest accuracy possible given budgeted com-
putational resources, typically materialized as upper bounds on the

This work has been supported in part by NSF grants 1202135 and 1500713.

processing time or the number of arithmetic operations. Thus, we
informally say in this context that a fast yet approximate solution
is preferable over an accurate yet slow one. Unfortunately, exist-
ing online approaches do not obey this principle since they hinge on
constraining the number of selected data vectors rather than saving
the computational load. Moreover, those constraints, typically given
in terms of the selection or compression ratio, must be adjusted by
the user to meet application-specific restrictions.

The distinctive viewpoint in this paper is that the decision on
selecting a data vector must be based on balancing how informative
it is relative to the computational cost required to process it. An
inherent trade-off underlies this decision: if an exceedingly large
portion of the data is selected, non-informative data vectors will be
processed, thus wasting computational resources. Conversely, if the
selection is so strict that only a small fraction of the data survive, the
overhead of the selection algorithm may not pay off for the savings
due to data reduction.

Our main contribution here is an online data selection mod-
ule intended to accelerate the convergence of a broad class of on-
line learning/optimization algorithms. As opposed to complexity-
agnostic methods, the selection/compression ratio is no longer set by
the user — it is adjusted on-the-fly to speed up the convergence in
terms of time or computational cost. The stochastic approximation
perspective adopted allows us to devise a fully adaptive and data-
driven method that needs no probabilistic knowledge about the data.
We illustrate its operation using the recursive least squares (RLS)
algorithm and demonstrate its effectiveness via simulations.

Notation: Throughout the paper, I[·] denotes the indicator func-
tion, while u(t) := I[t ≥ 0] represents the unit step function.

2. ONLINE DATA SELECTION ALGORITHM

This section introduces the notation and describes how a generic on-
line algorithm can be modified to accommodate data selection.

2.1. Modeling the Online Algorithm

Suppose that a certain online algorithm is employed to find the vec-
tor w ∈ Rp minimizing the objective J(w). At the n-th time slot,
the algorithm processes the n-th data vector dn to refine its estimate.
The form of dn is determined by the specific setting where the op-
timization problem arises. For instance, in unsupervised learning,
this datum is typically a vector in Euclidean space; in supervised
learning, it may correspond to an input-output pair dn = (xn, yn)
used to train a regression algorithm or a classifier. Motivated by big
data and streaming applications, we will consider that the data set
comprises an unlimited collection of such vectors.

6185978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Algorithm 1: Algorithm with Data Selection
1: Initialize ŵ0, S0 and set k = 0
2: for n = 1, 2, . . . do
3: if an = 1 then
4: k ← k + 1
5: ŵk = Fw(dn, ŵk−1,Sk−1).
6: Sk = FS(dn, ŵk−1,Sk−1).
7: end if
8: end for

The algorithm is generally represented by the following updates:

ŵn = Fw(dn, ŵn−1,Sn−1)

Sn = FS(dn, ŵn−1,Sn−1)
(1)

where Sn represents a collection of state variables where the algo-
rithm stores information about previous updates. For example, the
well-known RLS algorithm stores the inverse of the sample scatter
matrix, that is, Sn = {Cn}, where Cn ≈ (

∑n
i=1 xix

T
i)−1. Al-

gorithms without memory, such as the least mean-squares (LMS)
algorithm or the perceptron, need no state information (Sn = ∅).

We will be primarily concerned with the decreasing rate of
the sequence of objective values {J(ŵn)} that results from it-
erated application of (1). Processing dn entails an improvement
∆n|n−1 := J(ŵn−1) − J(ŵn), which can be regarded as a
measure of how informative dn is. Telescoping this improve-
ment yields J(ŵn) = J(ŵ0) −

∑n
i=1 ∆i|i−1. The time evo-

lution of the objective value can be characterized by the function
J(t) = J(ŵ0) −

∑∞
i=1 ∆i|i−1u(t − iTu), where Tu is the time

required to perform the update (1), and can be measured either in
time units or in the number of arithmetic operations.

2.2. Algorithm with Data Selection

The generic algorithm described in the previous section can be mod-
ified to execute (1) only for a subset of the data vectors, while dis-
carding the rest. In particular, suppose that a selection sequence
a1, a2, . . . is given, where an = 1 if dn is to be processed and
an = 0 otherwise. In Sec. 3 we will address the design of such a
sequence. The modified algorithm is listed as Algorithm 1.

Let ā(n) :=
∑n
i=1 ai denote the number of updates per-

formed up to (and including) the n-th time slot. If dn is se-
lected, the most recent estimate ŵā(n−1) is updated to ŵā(n) =
Fw(dn, ŵā(n−1),S ā(n−1)), and the resulting improvement be-
comes ∆n|ā(n−1), where ∆n|k := J(ŵk) − J(Fw(dn, ŵk,Sk))
is the improvement resulting from processing dn when the most re-
cent estimate is ŵk. Conversely, if dn is not selected, the estimate is
not updated and the improvement becomes zero. The time evolution
of the objective is therefore given by

J(t) = J(ŵ0)−
∞∑
n=1

an∆n|ā(n−1)u(t− nTc − ā(n)Tu) (2)

where Tc is the time required per time slot to check dn and decide
whether to select it or not. In the scheme proposed in Sec. 3, Tc will
be dominated by the time required to estimate ∆n|ā(n−1).

3. DATA SELECTION VIA THRESHOLDING

In this section, we start by discussing different criteria for designing
data selection rules. We next establish that thresholding selection

rules are approximately optimal and lead to a novel online imple-
mentation via stochastic approximation.

3.1. Design Criteria

In many real-time and big data applications, a fast yet approximate
estimate is preferable over a slow but accurate one. Our plan is to
formalize this principle in the form of a criterion that enables us to
compare different selection sequences. To do so, it is natural to look
at the evolution of the objective represented by (2), which depends
on the sequence {an}, and characterizes how fast it descends. Perti-
nent criteria include the following:

• Accuracy criterion: Given J̄ , we are interested in selection
sequences with minimum

TA({an}) := arg min
t
{t : J(t, {an}) ≤ J̄}.

• Deadline criterion: Given TDL, we are interested in those
sequences with minimum JDL({an}) := J(TDL, {an}).

• Quickest descent: Given an offset t0 and a window length
T̄ , we seek sequences minimizing the average slope of J(t):

sQD({an}) =
J(t0 + T̄ , {an})− J(t0, {an})

T̄
. (3)

Our focus in the rest of the paper will be the last criterion. In-
formally, this criterion is especially well motivated when the optimal
rule does not depend on the parameters t0 and T̄ , since in those cases
the average descent rate is maximized everywhere.

Let t0 = 0 and select T̄ = N̄Tc + ā(N̄)Tu, which is the time
required to process N̄ data vectors. Then, (3) becomes (c.f. (2))

sQD({an}) = −
∑N̄
n=1 an∆n|ā(n−1)

N̄Tc + ā(N̄)Tu
. (4)

The rest of this section deals with finding {an} to approximately
minimize (4) given the data. We will start by establishing the form
of an approximately optimal selection rule and then explain how to
practically implement such a strategy. As we will see, the final algo-
rithm will not be sensitive to the choice of t0 and T̄ .

3.2. Thresholding is Approximately Optimal

When attempting to minimize (4), one finds that the {∆n|ā(n−1)}
depend on the {an}, whereas the optimal {an} depends on the
{∆n|ā(n−1)}. Thus, unless one knows the {∆n|ā(n−1)} for all pos-
sible {an}, finding optimal sequences is intractable. To circumvent
this issue, we introduce an approximation as described next.

Assume that convergence of the estimates is slow, which implies
that ŵk and Sk experience slow changes over k. Due to data selec-
tion, this effect is even more pronounced in ŵā(n−1) and S ā(n−1)

when seen as sequences of n. One may therefore consider that the
improvement ∆n|k is approximately constant in k for a certain range
of values of n, which means that there exists a function f such that
∆n := f(dn) ≈ ∆n|ā(n−1) for n in a certain window. As seen
in Sec. 3.4, the effects of this approximation will be compensated to
some extent when we replace ∆n|k with their estimates.

Given the {∆n}, an approximately optimal selection sequence
may be found as the solution of

max
a1,...,aN̄

∑N̄
n=1 an∆n

TcN̄ + Tuā(n)
. (5)

6186

Simple inspection of (5) reveals that the optimal sequence satisfies
an = 0 for all n satisfying ∆n < 0. For this reason, we will focus
on the case where ∆n ≥ 0 for all n (the extension to accommodate
negative values is straightforward).

Proposition 1. The solution of (5) is an = I[∆n ≥ γ], where

γ := arg max
γ

∑N̄
n=1 I[∆n ≥ γ]∆n

TcN̄ + Tu
∑N̄
n=1 I[∆n ≥ γ]

. (6)

Proof. Let Π denote a permutation of {1, . . . , N̄} such that ∆Π(1) ≥
∆Π(2) ≥ . . . ≥ ∆Π(N̄). Introducing the auxiliary variable n̄ in (5)
yields the equivalent program

max
n̄,a1,...,aN̄

∑N̄
n=1 aΠ(n)∆Π(n)

TcN̄ + Tun̄
s.t.

N̄∑
n=1

an = n̄. (7)

For fixed n̄, the solution clearly satisfies aΠ(1) = . . . = aΠ(n̄) = 1
and aΠ(n̄+1) = . . . = aΠ(N̄) = 0. Equivalently an = 1 if and only
if ∆n ≥ ∆Π(n̄) := γ. It remains only to maximize with respect to
(w.r.t.) n̄, but this is equivalent to maximizing w.r.t. γ.

From Proposition 1, we deduce that an approximately optimal
selection rule in the sense of (3) is that selecting dn whenever ∆n ≥
γ, for γ a suitably selected threshold. The problem of optimizing
over the space of binary sequences therefore reduces to the problem
of optimizing w.r.t. a scalar variable.

3.3. Threshold Selection

Finding γ via (6) presents two difficulties: first, this expression de-
pends on ∆n for all n = 1, . . . , N̄ , which includes future values
since the threshold is required for data selection from the beginning.
Second, the {∆n} are not directly available in view of the data and
have to be somehow estimated. In this section, we address the first
concern by proposing an online rule for threshold computation, post-
poning estimation of {∆n} to Sec. 3.4 – here we assume that the ∆n

are known.
Dividing numerator and denominator by N̄ , (6) becomes

γ := arg max
γ

1
N̄

∑N̄
n=1 I[∆n ≥ γ]∆n

Tc + 1
N̄
Tu
∑N̄
n=1 I[∆n ≥ γ]

. (8)

If the {dn} are i.i.d. random variables, the slow convergence
assumption (c.f. Sec. 3.2) implies that the ∆n = f(dn) are also
approximately i.i.d. Invoking the law of large numbers, we can ap-
proximate (8) as

γ ≈ arg max
γ

E {I[∆n ≥ γ]∆n}
Tc + TuP {∆n ≥ γ}

. (9)

Suppose that the {∆n} have a continuous distribution. Then, setting
the derivative of the quotient in (9) w.r.t. γ equal to zero yields

E
{

max(∆n − γ, 0)− γ Tc
Tu

}
= 0.

A threshold γ satisfying this necessary condition can be found using
the Robbins-Monro iteration [14], which iteratively sets

γn+1 = γn + µn

[
max(∆n − γn, 0)− γn

Tc
Tu

]
(10)

where µn > 0 represents the step size.

Algorithm 2: Data-selection-based Algorithm
1: Initialize ŵ0, S0, and γ1.
2: Set k = 0
3: for n = 1, 2, . . . do
4: Compute ∆̂n|k

5: if ∆̂n|k ≥ γn then
6: k ← k + 1
7: ŵk = Fw(dn, ŵk−1,Sk−1)
8: Sk = FS(dn, ŵk−1,Sk−1)

9: γn+1 = Tu−µn(Tc+Tu)

Tu
γn + µn∆̂n|k

10: else
11: γn+1 = Tu−µnTc

Tu
γn

12: end if
13: end for

3.4. Quickest Descent Algorithm

Evaluating the right-hand side of (10) requires knowledge of the
{∆n}, which is not directly available from the data. We presume
that there is a means to somehow estimate ∆n ≈ ∆n|ā(n−1) from
the data, even roughly, in a time Tc < Tu. For example, in least-
squares (LS) regression, one may estimate the improvement using
the squared residual, which is nothing but the squared difference be-
tween yn and its predicted value using the most recent estimate of
w (see Sec. 4).

With ∆̂n|ā(n−1) denoting the estimate of ∆n|ā(n−1), we sum-
marize the algorithm modified with data selection as Algorithm 2.
Note that at no point does this algorithm depend on the window
parameters T̄ or N̄ , which suggests that the resulting selection se-
quence minimizes the slope of J(t) at any averaging window whose
length is sufficiently high so that the approximation in (9) holds.

Remark 1. It can be readily seen that if the {∆̂n|ā(n−1)} are
scaled by a positive constant α > 0, the thresholds resulting from it-
erative application of (10) will be — neglecting transient effects due
to the initialization — scaled similarly and, therefore, will generate
the same selection sequence. This means that positive scaling factors
need not be accounted for when designing the estimate ∆̂n|ā(n−1).

Remark 2. For simplicity, we assumed that J(ŵ) is the objec-
tive function that the algorithm described by (1) aims to minimize.
However, our derivation still applies if J(ŵ) is any other function
of the estimates whose decreasing rate is to be accelerated. For in-
stance, in Sec. 4 we will set J(ŵ) := ||wo − ŵ||2, where wo de-
notes the ground truth, in place of the LS cost function.

Remark 3 (Fixed selection rate). For comparison purposes, we
next provide an alternative threshold selection rule that, instead of
minimizing the quickest descent criterion, it simply seeks to achieve
a target selection probability π. The goal is therefore to find γ such
that P {∆n ≥ γ} = π or, alternatively, E {I[∆n ≥ γ]− π} = 0.
Again, this equation can be solved using a Robbins-Monro iteration,
which in this case reads as

γn+1 = γn + µn(I[∆̂n ≥ γn]− π)

or, equivalently,

γn+1 =

{
γn + µn(1− π) if dn is selected
γn − µnπ otherwise.

6187

4. APPLICATION EXAMPLE: RLS

In this section, we illustrate how the RLS algorithm, which is a
second-order online method to solve LS regression problems, can be
modified to accommodate the proposed data selection rule. Specif-
ically, if the data are generated according to yn = xTnwo + vn,
where vn is i.i.d. zero-mean noise with variance σ2, RLS iteratively
computes the LS estimate ŵn = arg minw

∑n
i=1(yi − xTi w)2.

When data selection is effected, the updating equations in Algo-
rithm 2 can be written as (note that Sk = {Ck} in RLS)

Ck+1 = Ck −
Ckxnx

T
nCk

1 + xTnCkxn

ŵk+1 = ŵk + en|kCnxn

(11)

where en|k := yn−xTn ŵk. Note that C ā(n) =
(∑n

i=1 aixix
T
i

)−1

after neglecting transient effects due to initialization.
Since we are primarily interested in accelerating the conver-

gence of ŵn to the ground truth wo, we set J(ŵ) := ||wo − ŵ||2
(see Remark 2), which converges to zero due to the consistency of
the LS estimate [15]. Simple algebra reveals that

∆n|k = J(ŵk)− J(ŵk + en|kCk+1xn)

= en|kx
T
nCk+1

[
2(wo − ŵk)− en|kCk+1xn

]
.

Neglecting noise effects, that is yn ≈ xTnwo, enables us to approxi-
mate en|k ≈ xTn (wo − ŵk), which in turn produces

∆n|k ≈ en|kxTnCk+1(2Ip −Ck+1xnx
T
n)(wo − ŵk). (12)

Defining Σ := limn→∞
1
n

∑n
i=1 xix

T
i and assuming that the series

converges, allows us to write Ck ≈
(∑n

i=1 aixix
T
i

)−1 ≈ (kΣ)−1.
Together with (12), this shows that

∆n|k ≈
2

k
en|kx

T
nΣ−1(wo − ŵk)

and in the extreme case of Σ ≈ Ip, one finds ∆n|k ≈ (2/k)e2
n|k.

Again, due to the slow variation assumption from Sec. 3.2, the
scaling factor 2/k experiences slow changes and can be neglected
(see Remark 1). Therefore, one may simply consider the estima-
tor ∆̂n|ā(n−1) = e2

n|ā(n−1). Evaluating ∆̂n|ā(n−1) incurs a time
Tc = 2p + 1 (set one time unit equal to the time required to per-
form an addition/multiplication), which is smaller than the time
Tu = 5p2 + 3p+ 1 required to compute (11).

In order to appreciate the acceleration effected by the proposed
sample selection algorithm, we illustrate its operation via a simple
numerical example. The ground truth vector wo was drawn from
a Gaussian distribution N (0p, Ip), where p = 200. The data vec-
tors were generated independently as xn ∼ N (0p,BBT), where
the entries of B ∈ Rp×p were independently generated using a
standardized Gaussian distribution. The noise variance was set to
σ2 = 25 and the step size µn was set equal to 0.2 for the quickest
descent algorithm (Algorithm 2) and 1 for the fixed selection-rate
algorithm from Remark 3.

Fig. 1 compares the time evolution of J(t)/J(0) for the pro-
posed algorithm along with the implementation with no data se-
lection and the fixed selection-rate algorithm with π = 0.4 and
π = 0.1. It is observed that data selection accelerates convergence
and that the quickest descent algorithm leads to an approximate es-
timate of wo much faster than the algorithm with no data selection.
The downside of the proposed algorithm is that the error in the steady

Time (number of operations)
×10 7

0 1 2 3 4 5

J
(t

)/
J
(0

)

0

0.2

0.4

0.6

0.8

1

No data selection

40% of data selected

10% of data selected

Quickest Descent

Fig. 1: The proposed algorithm (dashed line) is capable of providing
an approximate estimate much earlier than its fixed-selection rate
counterparts.

Iteration index (n)
×10 4

0 0.5 1 1.5 2

S
q

u
a

re
d

 a
m

p
lit

u
d

e
 u

n
it
s

×10 5

0

0.5

1

1.5

2

2.5

Squared Residual

Threshold

Fig. 2: The Quickest Descent algorithm adaptively adjusts the
threshold, thus tracking changes in the distribution of ∆̂n|ā(n−1).

state is increased due to the fact that noise effects are no longer neg-
ligible and the approximation in (12) becomes too coarse. Therefore,
after convergence it is recommended to switch to a fixed selection-
rate mode. It is also insightful to look at the evolution of the thresh-
old used by the quickest descent algorithm. Fig. 2 represents γn
versus the iteration index along with the values of {e2

n|ā(n−1)}. It
is observed that the algorithm is capable of effectively tracking the
changes in the distribution of the squared residual.

5. CONCLUSIONS

We have proposed a simple, time-adaptive, and data-driven online
selection algorithm that adjusts the selection ratio on-the-fly to ac-
celerate convergence of an online algorithm, as quantified by the
quickest descent criterion. We applied this technique to RLS, but a
number of other algorithms are yet to be considered in our future
research, including LMS, logistic regression, and subspace tracking,
to name a few.

6188

6. REFERENCES

[1] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and
optimization for big data analytics: (statistical) learning tools
for our era of data deluge,” IEEE Sig. Process. Mag., vol. 31,
no. 5, pp. 18–31, Sept 2014.

[2] M. Mahoney, “Randomized algorithms for matrices and data,”
Found. Trends. Mach. Learn., vol. 3, no. 2, pp. 123–224, 2011.

[3] S. Joshi and S. Boyd, “Sensor selection via convex optimiza-
tion,” IEEE Trans. Sig. Process., vol. 57, no. 2, pp. 451–462,
2009.

[4] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor se-
lection: Leveraging submodularity,” in Proc. 49th Conf. Deci-
sion Control, Atlanta, Dec. 2010, pp. 2572–2577.

[5] S. Shalev-Shwartz, “Online learning and online convex op-
timization,” Found. Trends Mach. Learn., vol. 4, no. 2, pp.
107–194, 2011.

[6] D. Berberidis, V. Kekatos, and G. B. Giannakis, “Online cen-
soring for large-scale regressions with application to streaming
big data,” Preprint at http://arXiv.org/abs/1507.
07536, 2015.

[7] D. Berberidis, V. Kekatos, G. Wang, and G. B. Giannakis,
“Adaptive censoring for large-scale regressions,” in Proc. IEEE
Int. Conf. Acoust., Speech, Sig. Process., Brisbane, Australia,
April 2015, pp. 5475–5479.

[8] Y. Zheng, R. Niu, and P. K. Varshney, “Sequential Bayesian
estimation with censored data for multi-sensor systems,” IEEE
Trans. Sig. Process., vol. 62, no. 10, pp. 2626–2641, Oct. 2014.

[9] G. Battistelli, A. Benavoli, and L. Chisci, “Data-driven strate-
gies for selective data transmission in sensor networks,” in
Proc. 51st Conf. Decision Control, Grand Wailea, Maui, 2012,
pp. 800–805.

[10] K. You, L. Xie, and S. Song, “Asymptotically optimal param-
eter estimation with scheduled measurements,” IEEE Trans.
Sig. Process., vol. 61, no. 14, pp. 3521–3531, Jul. 2013.

[11] D. Needell, N. Srebro, and R. Ward, “Stochastic gradient
descent and the randomized Kaczmarz algorithm,” ArXiv e-
prints. [Online]. Available: arXiv:1310.5715v2., 2014.

[12] T. Strohmer and R. Vershynin, “A randomized Kaczmarz algo-
rithm with exponential convergence,” J. Fourier Anal. Appl.,
vol. 15, no. 2, pp. 262–278, 2009.

[13] A. Agaskar, C. Wang, and Y. M. Lu, “Randomized Kaczmarz
algorithms: Exact MSE analysis and optimal sampling proba-
bilities,” in Proc. Global Conf. Sig. Info. Proc., Atlanta, Dec.
2014, pp. 389–393.

[14] T. Y Young and T. W. Calvert, Classification, Estimation and
Pattern Recognition, North-Holland, 1974.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, 2009.

6189

