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ABSTRACT

Multiple observation sequences are collected, among
which there is a small subset of outliers. A sequence
is considered an outlier if the observations therein are
generated by a mechanism different from that generating
the observations in the majority of sequences. In the
universal setting, the goal is to identify all the outliers
without any knowledge about the underlying generating
mechanisms. In prior work, this problem was studied as
a universal hypothesis testing problem, and a generalized
likelihood test was constructed and its asymptotic perfor-
mance characterized. Here a connection is made between
the generalized likelihood test and clustering algorithms
from machine learning. It is shown that the generalized
likelihood test is equivalent to combinatorial clustering
over the probability simplex with the Kullback-Leibler
divergence being the dissimilarity measure. Applied
to synthetic data sets for outlier hypothesis testing, the
performance of the generalized likelihood test is shown
to be superior to that of a number of other clustering
algorithms for sufficiently large sample sizes.

Index Terms— outlying sequence detection, univer-
sal outlier hypothesis testing, generalized likelihood test,
cluster analysis, spectral clustering, combinatorial clus-
tering

1. INTRODUCTION

The problem of interest in this paper is to identify a small
subset (possibly empty) of outliers among multiple ob-
servation sequences. It is assumed that the observations
in the majority of sequences are distributed according to
a common “typical” distribution. A sequence is consid-
ered an outlier if the distribution underlying it is different
from the common typical distribution. We are interested
in a universal setting of the problem, where nothing is
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known about the outlier and typical distributions except
that each outlier distribution is different from the typi-
cal distribution, and all of them have full support over a
finite alphabet. The goal is to design a test, which does
not depend on the outlier and typical distributions, to best
discern all the outliers. Outlying sequence detection finds
possible applications in anomaly detection in large data
sets, spectrum sensing and high frequency trading.

The problem of outlying sequence detection was
studied as a universal outlier hypothesis testing problem
in both fixed sample size [1] and sequential [2] settings.
For the fixed sample size setting, the main contribution
in [1] was to show that the generalized likelihood (GL)
test is far more efficient for universal outlier hypothe-
sis testing than for the other inference problems studied
in a universal setting, such as homogeneity testing and
classification [3–5]. The exponential consistency of the
GL test under various universal settings was established
in [1]. When there is a known number of identically
distributed outliers, the GL test was also shown to be
asymptotically optimal, i.e., as the number of sequences
approaches infinity, the achievable error exponent of the
GL test converges to the optimal one achievable when all
underlying distributions are known.

The machine learning approach to the problem of
outlying sequence detection treats it as a clustering
problem. The goal of cluster analysis is to segment a
collection of data objects into homogeneous subsets or
“clusters”, such that objects assigned to the same clus-
ter are more closely related to one another than objects
assigned to different clusters [6–9]. Similar to classifica-
tion, cluster analysis creates labeling of the objects with
class (cluster) labels. The labels are derived from the
data in cluster analysis, whereas for classification, un-
labeled objects are assigned a class label using a model
developed from training objects with known labels.

The notion of similarity or dissimilarity is of central
importance to a majority of clustering algorithms [6–9].
The dissimilarity between two data objects is a quantita-
tive measurement that characterizes how closely related
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the two objects are. In cluster analysis, an object is usu-
ally described by a set of measurements. The dissimilar-
ity between a pair of objects is often given by an appro-
priately chosen distance metric, which can be computed
using such measurements. For instance, a popular choice
of the distance metric is the Euclidean distance for con-
tinuous measurements, and Jaccard coefficient for binary
measurements [10, 11]. Having chosen an appropriate
dissimilarity measure, a clustering algorithm seeks to ei-
ther maximize the similarity within clusters, or to mini-
mize the proximity between clusters, or a combination of
both [6–9].

In this paper, we study the connection between the
approaches of universal outlier hypothesis testing and
cluster analysis for outlying sequence detection. We
show that the GL test [1] for universal outlier hypothesis
testing is equivalent to combinatorial clustering over the
probability simplex, with the Kullback-Leibler (KL) di-
vergence as the dissimilarity measure. We compare the
performance of the GL test and that of a number of clus-
tering algorithms against a synthetic data set for outlying
sequence detection. We show that the GL test outper-
forms the other clustering algorithms for large enough
sample size.

2. PRELIMINARIES

Throughout the paper, random variables are denoted by
capital letters, and their realizations are denoted by the
corresponding lower-case letters. All random variables
are assumed to take values in finite alphabets.

For a finite set Y , let Ym denote the m Cartesian
product of Y, and P (Y) denote the set of all probability
mass functions (pmfs) on Y. The empirical distribution
of a sequence y = ym = (y1, . . . , ym) ∈ Ym, denoted
by γ = γy ∈ P (Y) , is defined at each y ∈ Y as

γ(y) ,
1

m

∣∣∣ {k = 1, . . . ,m : yk = y}
∣∣∣.

The following technical facts will be useful; their
derivations can be found in [12, Theorem 11.1.2]. Con-
sider random variables Y n which are i.i.d. according
to p ∈ P(Y). Let yn ∈ Yn be a sequence with an
empirical distribution γ ∈ P(Y). It follows that the
probability of such sequence yn, under p and under the
i.i.d. assumption, is

p(yn) = exp
{
− n

(
D(γ‖p) +H(γ)

)}
, (1)

where D(γ‖p) and H(γ) are the KL divergence of γ and
p, and entropy of γ, defined as

D(γ‖p) ,
∑
y∈Y

γ(y) log
γ(y)

p(y)
,

and

H(γ) , −
∑
y∈Y

γ(y) log γ(y),

respectively.

3. UNIVERSAL OUTLIER HYPOTHESIS
TESTING

Consider M ≥ 3 independent sequences, each of
which consists of n i.i.d. observations. The major-
ity of the sequences are distributed according to a
“typical” distribution π ∈ P(Y) except for a subset
S ⊂ {1, . . . ,M} , |S| < M

2 , of outlier sequences.
Outlier sequences are distributed according to a common
“outlier” distribution µ ∈ P(Y). Nothing is known about
µ and π except that µ 6= π, and that both of them have
full support over a finite alphabet Y .

Let Y (i)
k ∈ Y denote the k-th observation of the i-

th sequence, and let S be the set comprising all possible
outlier subsets. For the hypothesis corresponding to an
outlier subset S ∈ S, the joint distribution of all the ob-
servations is given by

pS
(
yMn

)
= LS

(
yMn, µ, π

)
=

n∏
k=1

∏
i∈S

µ
(
y
(i)
k

)∏
j /∈S

π
(
y
(j)
k

) , (2)

where LS
(
yMn, µ, π

)
denotes the likelihood, which is a

function of the observations yMn, and µ and π.
In this paper, we consider models with at least one

and up to K, 1 ≤ K < M
2 , identically distributed out-

liers, where K is known at the outset. Models with an
unknown number (possibly zero) of distinctly distributed
outliers are studied in [1]. We also restrict our attention
to the fixed sample size setting where the number of ob-
servations in each sequence is fixed at the outset. The
results for the sequential setting can be found in [2].

A test for the outlier subset is done based on a uni-
versal rule δ : YMn → S . In particular, the test δ is not
allowed to be a function of the unknown distributions µ
and π. The accuracy of a universal test is gauged using
the maximal probability of error

Pmax , max
S∈S

PS
{
δ
(
yMn

)
6= S

}
,

which is a function of the test δ, and the underlying dis-
tributions µ and π. We say a test is universally consistent
if the maximal probability of error vanishes for any µ, π,
µ 6= π, as n → ∞. Further, it is termed universally
exponentially consistent if the exponent for the maximal
probability of error, defined as

α , lim
n→∞

− 1

n
log Pmax.
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is strictly positive for any µ, π, µ 6= π.

3.1. Generalized Likelihood Test

For each i = 1, . . . ,M , denote the empirical distribution
of y(i) by γi. In the universal setting with µ and π being
unknown, conditioned on the set of outliers being S ∈ S,
we compute the generalized likelihood (GL) of yMn by
replacing µ and π in (2) with their maximum likelihood
(ML) estimates µ̂S ,

∑
i∈S γi
|S| , and π̂S ,

∑
j /∈S γj

M−|S| , as

p̂univ
S

(
yMn

)
= L̂S

(
yMn, µ̂S , π̂S

)
.

The GL test then selects the hypothesis under which the
GL is maximized, i.e.,

δ
(
yMn

)
= argmax

S⊂{1,...,M}, |S|≤K
p̂univ
S , (3)

where ties are broken arbitrarily.

3.2. Performance of GL Test

When the number of outliers is known, i.e., when |S| =
K for all S ∈ S, the GL test in (3) is shown in [1] to be
exponentially consistent, and it also achieves the abso-
lutely optimal error exponent asymptotically as the num-
ber of sequences M approaches infinity.

Theorem 1. For each M ≥ 3, when the number of out-
liers is known, the GL test δ in (3) is universally expo-
nentially consistent for any µ, π, µ 6= π (cf. Theorem 9
in [1]).

Furthermore, as M → ∞, the achievable error ex-
ponent of the GL test in (3) converges to the optimal one
achievable when both µ and π are known (cf. Theorem
10 in [1]).

For more general models with at most K outliers,
1 < K < M/2, the GL test achieves exponential con-
sistency universally as long as the outlier distribution is
distinct from the typical one.

Theorem 2. For each M ≥ 3, when there is at least one
and up to K outliers, the GL test in (3) is universally ex-
ponentially consistent for any µ, π, µ 6= π (cf. Theorem
11 in [1]).

4. CONNECTION TO CLUSTER ANALYSIS

Another approach to outlying sequence detection is to
treat it as a clustering problem in the domain of machine
learning [6–9]. In outlying sequence detection, an entire
sequence can be considered an object. Typical sequences
are more closely related to one another than to any out-
lier sequence in the sense that the observations therein

are distributed according to the same typical distribution.
The same holds for outlier sequences when the outliers
are identically distributed. Under such assumption, out-
liers can be identified by clustering the sequences into
two clusters, where the cluster with more members con-
tains all typical sequences, and the other outliers. Inter-
estingly, we shall show that the GL test in (3) can be in-
terpreted as combinatorial clustering over the probability
simplex that has the KL divergence as the dissimilarity
measure.

4.1. Combinatorial Clustering

Consider vector observations xi, i = 1, . . . ,m, taking
values in Rp, p ≥ 1. The goal is to cluster these vec-
tor observations into T clusters where T is known at
the outset. We index each cluster by a unique integer
t = 1, . . . , T . A cluster assignment is completely speci-
fied by a many-to-one mapping C such that for each ob-
servation xi, i = 1, . . . ,m, the cluster label of xi is given
by C(i), C(i) ∈ {1, . . . , T}.

Combinatorial clustering often starts with a “loss”
function, which characterizes the extend to which the
clustering goal is not met [7]. A natural way to con-
struct such a loss function is to use a pairwise dissimi-
larity measure. Let d(xi, xj) denote the dissimilarity be-
tween xi and xj , i, j = 1, . . . ,m. Having chosen an
appropriate dissimilarity measure, a natural loss function
is given by

W (C) =

T∑
t=1

w(t) (4)

=

T∑
t=1

∑
i:C(i)=t

∑
j:C(j)=t

d(xi, xj),

where w(t) is called the point scatter of the t-th cluster,
and W (C) the within-cluster pointer scatter associated
with the cluster assignment C.

Let Cm,T denote the set comprising all possible clus-
ter assignments of the m observations into T clusters.
One then selects the cluster assignment C? that mini-
mizes the value of the loss function, i.e.,

C? = argmin
C∈Cm,T

W (C).

4.2. GL Test as Combinatorial Clustering

It is straightforward to show using (1) that the GL test in
(3) is equivalent to

δ
(
yMn

)
= argmin

S⊂{1,...,M}, |S|≤K

∑
i∈S

D
(
γi
∥∥ ∑

l∈S γl
|S|

)
+
∑
j /∈S

D
(
γj
∥∥ ∑

k/∈S γk
M−|S|

)
. (5)
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The GL test can be interpreted as follows. Each se-
quence of observations is represented by its correspond-
ing empirical distribution on the probability simplex.
When the outliers are identically distributed, it suffices
to cluster the empirical distributions into two clusters,
where the larger cluster contains the empirical distribu-
tions of all typical sequences, and the smaller cluster
outliers. A cluster assignment is completely specified
by the set of outliers S. For a particular cluster, de-
fine the point scatter as the sum of the KL divergences
between each individual cluster member (an empirical
distribution) and the cluster center (the average of all
empirical distributions, that is, a mixture distribution).
Given a cluster assignment S, the objective function
of the optimization problem in (5) corresponds to the
within-cluster point scatter defined in (4). The GL test
decides on the cluster assignment that minimizes the
within-cluster point scatter among all possible cluster
assignments, each specified by S ∈ S, |S| ≤ K. We
now see that the GL test is equivalent to combinatorial
clustering over the probability simplex that has the KL
divergence as the dissimilarity measure.

Remark 1. The original data objects (sequences of
length n) are each represented by its empirical distri-
bution on the probability simplex. The dimension of
these empirical distributions is equal to the size of the
alphabet, which does not increase as the length of the
sequences, n, increases.

It is possible to replace the KL divergence in (5) with
an alternative dissimilarity measure such as the l2 dis-
tance. Our theoretical results in Theorem 1 suggest that
the KL divergence is the asymptotically optimal dissim-
ilarity measure for certain settings of outlying sequence
detection. Specifically, when there is a known number of
identically distributed outliers, as M approaches infin-
ity, the achievable error exponent of the GL test in (5)
converges to the absolutely optimal one achievable when
both µ and π are known (cf. Theorem 1). It is not known
if the same asymptotic optimality will continue to hold
with other choices of the dissimilarity measure.

5. NUMERICAL RESULTS

We evaluate the performance of two universal tests and
a number of clustering algorithms against synthetic data
sets for outlying sequence detection. We apply four dif-
ferent clustering algorithms: two combinatorial cluster-
ing algorithms using the l2 distance, and the Hamming
distance, respectively, and two spectral clustering algo-
rithms using the Hamming distance, and a Hamming-like
distance defined for any pair of sequences, respectively.
For comparison, we also apply the GL test in (5), and
another universal test based on the l2 distance. For each

data set, the GL test in (5) outperforms all other algo-
rithms for large enough sample sizes.

Due to the limited space, we focus on the results rel-
evant to the GL test and two other algorithms. In partic-
ular, we compare the GL test with a spectral clustering
algorithm due to Ng, Jordan, and Weiss [13]. We adopt a
pairwise Hamming-like distance to measure the similar-
ity between two sequences (cf. Section 2 in [13]), i.e., the
similarity between sequences i and j, i, j ∈ {1, . . . ,M},
is

d(i, j) ,
n∑
k=1

n∑
l=1

I(Y (i)
k = Y

(j)
l ).

In additional, we consider another universal test using the
l2 distance as the dissimilarity measure. Specifically, this
test solves the same optimization problem as in (5), but
with the KL divergence being replaced by the l2 distance
in the objective function in (5).

In this comparison, the particular choice of typical
and outlier distributions are π = (0.25, 0.41, 0.34) and
µ = (0.1, 0.55, 0.35). There is exactly one outlier among
M = 5 sequences. For different sample size n, we
evaluate the maximum probability of error incurred by
various algorithms. As we can see from Figure 1, for
this synthetic data set, the spectral clustering using the
Hamming-like distance outperforms the GL test when n
is small. For sufficiently large n, the GL test outper-
forms the other two algorithms. These results suggest
that for outlying sequence detection, it may be beneficial
to use spectral clustering when the number of observa-
tions is limited. For n sufficiently large, the simulation
results corroborate our theoretical findings in Theorem
1, which establishes the asymptotic optimality of the KL
divergence as a dissimilarity measure for this particular
setting of outlying sequence detection (cf. Remark 1).

Sample size n

50 100 150 200

P
m

a
x

0

0.05

0.1

0.15

0.2

0.25

0.3

GL test

universal test using ℓ2 distance

spectral clustering

Fig. 1. Compare the GL test with two other algorithms
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