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ABSTRACT
We consider the problem of recovering a graph signal from
noisy and incomplete information. In particular, we propose
an approximate message passing based iterative method for
graph signal recovery. The recovery of the graph signal is
based on noisy signal values at a small number of randomly
selected nodes. Our approach exploits the smoothness of
typical graph signals occurring in many applications, such
as wireless sensor networks or social network analysis. The
graph signals are smooth in the sense that neighboring nodes
have similar signal values. Methodologically, our algorithm
is a new instance of the denoising based approximate mes-
sage passing framework introduced recently by Metzler et.
al. We validate the performance of the proposed recovery
method via numerical experiments. In certain scenarios our
algorithm outperforms existing methods.

Index Terms— Graph signal denoising, compressed sens-
ing, approximate message passing, subsampling.

1. INTRODUCTION

A recent approach to deal with large-scale datasets occurring
in big data applications such as genetics, image processing
and social network analysis is the theory of graph signal pro-
cessing [1]. By considering discrete time signals as being
defined over a chain graph (the nodes represent the time in-
stants) graph signal processing is obtained by allowing for
general graphs as the signal domain. E.g., a graph signal oc-
curring in a wireless sensor network is defined over a graph
whose nodes represent the sensors and the edges model con-
nectivity between those sensors. Another example for graph
signals is given by 2D images where each pixel corresponds
to a node in a grid graph connecting the nearest pixels with
each other. A main goal of graph signal processing is to de-
rive sampling theorems which are important for design of
graph signal processing systems. By paralleling the Nyquist-
Shannon theory for band-limited signals, the authors of [2]
define notions of (approximately) band-limitedness for graph
signals. For a given bandwidth they also construct sampling
sets of minimum size which guarantee perfect recovery. It
is also possible to define the notion of sparse graph signals
and apply concepts of compressed sensing (CS) to graph-
structured signals. A first application of CS to graph signals
is based on the graph Fourier transform (GFT) which is com-
posed of the eigenvectors of the graph Laplacian. Assuming

that the graph signal is sparse in the GFT domain, the au-
thors of [3] propose to subsample the graph signal according
to CS theory. However, in this paper we consider a notion
of sparsity different from [3]. In particular, we assume that
the graph signal of interest is sparse in the sense of consisting
of few clusters within which the signal is approximately con-
stant. This notion of graph signal sparsity can be interpreted
as a constraint on the total variation of the graph signal. Thus,
our goal is to reconstruct graph signals under a total variation
constraint. For discrete time signals, total variation based de-
noising has been considered in [4], which applies the approxi-
mate message passing (AMP) framework for denoising struc-
tured signals. Moreover, the authors of [5] present a widely
applicable framework, termed denoising-based approximate
message passing (DAMP). This framework is based on com-
bining a given denoiser functions, tailored to a specific signal
model, with the AMP rationale of iteratively recovering sig-
nals from incomplete random measurements. However, to the
best of our knowledge, the use of the DAMP framework for
graph signal denoising employing a total-variation constraint
is novel.

Contributions: Our main contribution is an AMP based
graph signal recovery method which is able to cope with in-
complete and noisy measurements. This method can be re-
garded as an instance of the denoising framework in [5] for
the special case of graph signals having small total variation,
i.e., which consist of few clusters within which the signal val-
ues do not vary significantly. The signal recovery is based on
a small number of noisy samples of the smooth graph signal.
We conduct illustrative numerical experiments which validate
the performance of the proposed recovery method and reveal
superiority of our approach against existing methods in some
relevant scenarios.

Outline: The rest of the paper is organized as follows. We
formalize the problem of graph signal recovery from incom-
plete and noisy measurements in Section 2. The novel DAMP
based recovery method is presented in Section 3. Finally,
some numerical results are presented and discussed in Sec-
tion 4.

2. PROBLEM SETUP

2.1. Elements of Graph Signal Processing
The emerging field of graph signal processing [1, 6] aims at
dealing efficiently with decentralized, graph-structured data
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Fig. 1. (a) Chain graph underlying discrete time signal pro-
cessing and (b) generic graph signal.

as encountered in modern information networks. Graph sig-
nal processing is a generalization of discrete time signal pro-
cessing. Specifically, discrete time signals may be interpreted
as graph signals define over a chain graph whose nodes rep-
resent the discrete time instants. A general graph signal is
obtained by allowing for general graph structures (see Fig.
1). More formally, we consider undirected weighted graphs
G = (V, E ,W ) with node set V = {1, . . . , N} and the
edge set E consisting of unordered node pairs (r, s) for which
Wr,s 6= 0. For a given graph G, a graph signal x is a mapping
from the node set into the reals. We can represent a graph
signal conveniently as a vector x ∈ RN by defining xr to be
the value of the graph signal at node r ∈ V .

We consider graph signals that are defined over undirected
and weighted graphs. A non-zero entry of the weight ma-
trix Wr,s represents the strength of the correlation between
signal values xr and xs. In a wireless sensor network ap-
plication, the entry Wr,s could reflect the distance between
sensor nodes r and s. It is reasonable to assume the sensor
values xr and xs of nearby sensor nodes to be strongly cor-
related. Another important matrix associated with a graph is
the graph Laplacian matrix L, defined as

L = D−W. (1)

Here, D denotes the diagonal matrix with the rth diagonal
element given by Dr,r =

∑
r′∈V Dr,r′ , i.e., the sum of the

weights of all the edges connected to node r.
Many methods of discrete time signal processing (e.g., de-

noising), rely on smoothness of the signal with respect to the
underlying graph. In order to make the notion of graph signal
smoothness precise, we follow [6] and introduce the graph
gradient

‖∇rx‖2 :=

[ ∑
r′∈N (r)

Wr,r′(xr′ − xr)2
]1/2

. (2)

The norm ‖∇rx‖ of the local gradient is termed local varia-
tion and measures the variability of the graph signal at a given
node r. Here,N (r) := {r′ :Wr,r′ 6= 0} is the neighborhood
of node r ∈ V . A global measure of the graph signal smooth-
ness is then obtained by:

Sp(x) = (1/p)
∑
r∈V
‖∇rx‖p (3)

for some p ∈ [1,∞). In what follows we will consider only
two specific choices for p, i.e., p = 1 and p = 2. For p = 1

the measure Sp(x) is termed the graph total variation [7]
and when p = 2 the measure Sp(x) reduces to the graph
Laplacian form [6]

S2(x) = (1/2)
∑
r∈V

∑
r′∈N (r)

Wr,r′(xr′ − xr)2 = xTLx. (4)

We have now the tools at hand to formalize the graph signal
recovery problem considered in this paper.

2.2. The Recovery Problem

Our approach is based on the hypothesis that the true graph
signal x is smooth, i.e., the measure Sp(x) (p ∈ {1, 2}) is
small. We have access to the graph signal x only via its values
at a randomly selected small subset S = {i1, . . . , iM} ⊆ V
of graph nodes. Moreover, the observed signal values are
corrupted by measurement noise. Thus, the observation is
given by

y = x
∣∣
S + σn, (5)

where the restriction x
∣∣
S is obtained from x by selecting the

entries of x with indices in S. The noise vector n is assumed
to be white Gaussian noise with zero-mean and unit variance,
i.e., n ∼ N (0, I). Alternatively, we can represent the vector
y as

y = Ax+ σn. (6)

The measurement matrix A ∈ {0, 1}M×N models the selec-
tion of the subset S: It contains exactly one non-zero element
in each row, i.e., Ar,ir = 1. Since the subset S is chosen ran-
domly, the matrix A is random as well.

While the recovery of graph signals from incomplete noisy
measurements has been considered already in [8], the appli-
cation of AMP to the recovery of smooth graph signals seems
to be new. Since our recovery problem can be interpreted as
a structured signal recovery problem using incomplete infor-
mation, we will now propose a recovery method based on
the DAMP framework which is well suited for such recovery
problms.

3. GRAPH SIGNAL DENOISING VIA DAMP

3.1. Review of DAMP

Consider a signal x ∈ RN which is known to belong to some
signal class C, e.g., graph signals with small total variation.
For many important signal classes C, one can find efficient
denoising functions Dσ(·) which operate on the noisy signal

y = x+ σn (7)

where n is modeled as zero-mean white Gaussian noise with
unit variance, i.e., n ∼ N (0, I). The denoising mapping
Dσ(·) typically depends on the variance σ2 of the additive
noise in (7). However, the notation Dσ(·) does not make
explicit that the denoiser also depends on the signal model C.
The output Dσ(y) of the denoiser, when applied to the noisy
signal y, is an estimate for the true signal x. For C being the
set of sparse signals, i.e., C = Xs := {s ∈ RN : ‖s‖0 ≤ s} it
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is known that an efficient denoising mapping is obtained by
retaining the s largest (magnitude) entries of y and zeroing
the rest.

However, as opposed to the signal in noise model (7), re-
cently much interest has been devoted to the problem of re-
covering a structured signal x from incomplete information
given by noisy low-dimensional random projections

y = Ax+ σn, (8)

where A ∈ RM×N , with M � N , denotes a random projec-
tion matrix. A widely used choice for A is the Gaussian en-
semble which is a matrix consisting of i.i.d. zero-mean Gaus-
sian variables with variance 1/M (which ensures column nor-
malization). By leveraging the principles behind AMP, which
considers the special case of sparse signals C = Xs, the
authors of [5] propose an efficient iterative method, termed
DAMP, for recovering a structured signal x ∈ C from the
measurements y in (8) for a general signal class C with asso-
ciated denoiser Dσ(·).

In particular, DAMP constructs a sequence x̂t, t =
1, 2, . . ., of signal estimates by iterating the following steps
[5, Eq. (4)]

x̂t+1 = Dσ̂t(AT zt + x̂t) (9)

zt = y−Ax̂t+
1

M
zt−1∇·Dσ̂t−1(AT zt−1+xt−1) (10)

σ̂t =
√
(1/M)‖zt‖22. (11)

The initial choice for the estimate x̂ and residual z is x̂0 = 0
and ẑ0 = y, respectively.

The DAMP iterations (9)–(11) are able to accurately re-
cover the structured signal x ∈ C from the noisy measure-
ments y in (8). The correction term in (10), i.e., 1

M zt−1∇·
Dσ̂t−1(AT zt−1 + xt−1) is crucial for the success of the
DAMP algorithm. The effect of including this term in (10)
is that the equivalent estimation noise nt := AT zt + x̂t − x
behaves nearly like a multivariate normal random vector [5].
The (approximate) Gaussianity of the effective noise vector
nt is clearly desirable since the denoiser Dσ̂t(·) is typically
trimmed to remove additive Gaussian noise and the first step
(9) of DAMP just amounts to the denoising operation

x̂t+1 = Dσ̂t(x+ nt). (12)

3.2. Graph Signal DAMP (GSDAMP)

Let us now specialize the generic DAMP algorithm, given by
the iterations (9)–(11), to the problem of graph signal denois-
ing. We assume that the true signal belongs to the class C of
smooth graph signals, given explicitly by C = {x : Sp(x) ≤
ρ}. A natural choice for the corresponding denoiser, which is
to be applied to a noisy graph signal s = x + σn, would be
given by the minimizer of the following problem:

min
x′∈RN

‖s− x′‖22 s.t. Sp(x
′) ≤ ρ. (13)

However, we will find it more convenient to use the “penal-
ized version” of (13), i.e.,

Dσ(s) := arg min
x′∈RN

‖s− x′‖22 + λSp(x
′). (14)

For convex Sp(x
′), which is the case for p ≥ 1, the two

problems (13) and (14) are equivalent by Lagrangian duality
[9]. In fact, for each choice of ρ there exists a choice for
λ such that a minimizer (13) is simultaneously a solution to
(14) and vice-versa.

In order to deploy DAMP for graph signal denoising, we
require an efficient implementation of the denoiser mapping
Dσ(·) and its divergence ∇·Dσ(x) :=

∑N
k=1

∂
∂xk

Dσ
k(x).

Note that the denoiser amounts to solving a convex optimiza-
tion problem allowing for efficient numerical implementa-
tions. In particular, we will rely on the freely available soft-
ware package GSPBox [10]. In order to evaluate the diver-
gence ∇·Dσ(x), we follow [5]: An approximation of the
divergence can be obtained by [11]

∇·Dσ(x) ≈ Eb

{
(1/ε)bT (Dσ(x+ εb)−Dσ(x))

}
(15)

for some small ε > 0. However, in the numerical implemen-
tation we will make a further approximation by replacing the
expectation in (15) with a sample mean, i..e, we use

d̃(x) :=
1

L

L∑
l=1

(1/ε)bTl (D
σ(x+εbl)−Dσ(x)), (16)

where b1, . . . ,bL are i.i.d. realizations of the random vector
b ∼ N (0, I).

The summary of our method, which we term graph signal
denoising using AMP (GSDAMP), is given in Alg.1.

Algorithm 1 (GSDAMP). Given the noisy graph signal sam-
ples y (cf. (8)), sampling pattern S, and denoising parameter
p (cf. (14)) perform the following:

Step 1: Initialize t = 0, x̂0 = 0, ẑ0 = y,
Step 2: implement a DAMP iteration via
• x̃t = AT zt + x̂t

• x̂t+1 = Dσ̂t(x̃t) (using the denoiser (14))

• zt = y−Ax̂t+
1
M zt−1d̃(x̃t−1) (using approximation (16))

Step 3: t := t+ 1
Step 4: If stoping criterion satisfied: output final estimate

x̂t, otherwise go back to Step 2.

There are various possibilities for the stopping criterion in
Step 4 of Alg. 1, e.g. a maximum number of iterations. For
the numerical experiments discussed in Section 4, we used as
convergence criterion the relative progress ‖x̂t−x̂t−1‖2

‖x̂t‖2 and
stopped if it was below a given threshold ε.

4. NUMERICAL RESULTS

We present the results of the numerical experiments validat-
ing the performance of the proposed method. In particular,
we analyze the normalized mean square error (NMSE) for
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Fig. 2. The original graph G0 and its recovery with four dif-
ferent recovery algorithms for a sampling rate M/N = 0.1
and a noise variance σ2 = 0.1.

varying sampling rate M/N, and noise variance σ2. Here,
we use Alg.1 with total variation (p = 1 in (3)) [7] and
Tikhonov (p = 2 in (3)) [12] denoisers. We refer to these
two instances of Alg.1 as TV-GSDAMP and Tik-GSDAMP
respectively, and compare their efficiency with NLM [13] and
Grampa [14] algorithms.

Using the GSPBox software [10], we generate an undi-
rected graph G0, with size N =1000. The graph signals are
piece-wise smooth taking values 1 and -1 coded by red and
blue colours in Fig. 2. In particular, Fig. 2 shows the original
graph signal G0 and four recovered graph signals of the men-
tioned denoising algorithms. As evident, the graph signals re-
covered by TV-GSDAMP and Tik-GSDAMP are much more
similar to the original graph signal than the results of NLM
and Grampa.

The influence of the pairs (M/N, σ2) of sampling rate
M/N and noise variance σ2 on recovery performance is in-
vestigated in Fig. 3. The solid line shows the border be-
tween successful and failing reconstruction of the graph sig-
nal. In this experiment, the graph signal recovery is consid-
ered successful, when NMSE 6 0.28 and the success region
of each reconstruction algorithm is located below the curves.
As Fig. 3 illustrates, both Tik-GSDAMP and TV-GSDAMP
show significantly better recovery performance for low sam-
pling rate, i.e., when M/N < 0.4.

In Fig. 4, we plot the NMSE over sampling rate M/N for
TV-GSDAMP and Tik-GSDAMP. We show the correspond-
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Fig. 3. The empirical comparison of the successful-recovery
range of the investigated algorithms.
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Fig. 4. NMSE vs sampling rate M/N, where the noise vari-
ance σ2 is set to 0.1 and 0.3.
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Fig. 5. NMSE vs noise variance σ2, where the sampling rate
M/N is set to 0.3 and 0.5.

ing plots for the NLM and Grampa recovery methods as well.
As one can observe from Fig. 4, the NMSE of TV-GSDAMP
and Tik-GSDAMP is smaller compared to other solvers, ex-
cept for sampling rates larger than 0.8, where Grampa out-
performs our algorithm (for both p = 1 and p = 2).

We also investigated the dependence of NMSE on the noise
variance σ2 for sampling rates of 0.3 and 0.5. As evident
from Fig. 5, our algorithm is particularly superior at very low
sampling rates.

5. CONCLUSION

We present a new AMP-based method for recovering smooth
graph signals based on a small number of noisy signal sam-
ples. For the recovery, we combine graph signal denoisers
with the AMP framework. In several relevant regimes, par-
ticularly for very low sampling rates, our method outperforms
existing methods signifcantly.
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