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Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213

ABSTRACT
A class of models for describing sets of time series generated by in-
teracting agents using directed, weighted graphs is introduced. A
computationally tractable algorithm for estimating the graph adja-
cency matrix of this model from observed time series data is pre-
sented. The performance guarantees of this algorithm for prediction
are outlined under several assumptions on the properties of the dy-
namics of the system of agents and on the true values of the param-
eters. These guarantees are tested empirically through simulation
studies using several random graph models.

Index Terms— Graph Signal Processing, Sparse Estimation,
Adjacency Matrix, Time Series, Statistical Performance

1. INTRODUCTION

Networks play an increasingly central role in modern society. From
the study of science [1] to socializing online [2], networks are at the
heart of many complex systems of interacting entities. Graphs are
useful mathematical objects that can be used to describe networks,
and there is growing interest in using graphs to process signals that
come from networks [3]. Most of these techniques assume the graph
structure is given (as either the adjacency matrix A or the Lapla-
cian L); however, often in practice, the graph underlying networked
data is not known and must be estimated in order to perform further
analysis.

In this paper, we estimate the weighted, directed adjacency ma-
trix A of a graph for a set of time series observed from dynamically
interacting agents in a network. We also present performance guar-
antees for our estimation procedure and the setting under which these
guarantees hold. We adopt the Discrete Signal Processing (DSPG )
framework [4] in associating the estimated graph with a “shift” oper-
ation that describes dependencies among agents or network effects.

We quickly overview the DSPG framework and describe the time
series model in section 2. Then we formulate our problem and
present the estimation algorithm in section 3. Next, we describe
the theoretical performance of the algorithm in section 4. We show
empirical result for several random network models in section 5 and
finally conclude in section 6.

2. RELATION TO PRIOR WORK

2.1. Discrete Signal Processing on Graphs

Discrete Signal Processing on Graphs (DSPG ) [5] provides a frame-
work with which to analyze data with N elements for which rela-
tional information between elements is known.
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2.1.1. Graph Signals

Consider a graph G = (V,A) where A is the weighted adjacency
matrix of the graph and the vertex set V = {v0, . . . , vN−1}. Each
data element corresponds to a node vn, and the weight Anm is as-
signed to a directed edge from vm to vn. Graph signals can be writ-
ten as N length vectors,

x = (x0 x1 . . . xN−1)T ∈ CN .

2.1.2. Graph Shift

A graph shift in DSPG is a local operation with a graph signal x as
input and another graph signal x̃ as output with entries

x̃i =
∑
j∈Ni

Aijxj

where Ni is the neighborhood of node vi. In matrix notation, we
have the shifted signal given by the product of the input signal with
the adjacency matrix x̃ = Ax. These graph shifts can be seen as
corresponding to “spatial” dimension.

2.2. Causal Graph Processes

We now detail the model for these graph processes (see [6, 7] for
more details). We assume we are given N time series of length T ,
{xn[k]}, with n = 1, . . . , N and k = 0, 1, . . . , T , where n indexes
the agent and k the time index. Our goal is to fit a dynamical model
that captures both the “spatial” (across agents) and temporal depen-
dencies of the data. The spatial dependencies are captured in our
model by a graph G(V,A) where node vn represents agent n, and
A is the weighted, directed adjacency matrix of the graph. The value
of Amn represents the strength of the dependency between of the
signal {xm[k]} on the past values of {xn[k]}. The temporal depen-
dencies are modeled by an autoregressive (AR) model relating the
time series {x[k]} to its immediate past M values, where the vector
x[k] =

(
x0[k] x1[k] . . . xN−1[k]

)T ∈ CN represents the
graph signal at time sample k.

We consider a Causal Graph Process (CGP) to be a time series
x[k] on a graph G = (V,A) of the following form:

x[k] = w[k] +

M∑
i=1

Pi(A, c)x[k − i]

= w[k] +

M∑
i=1

( i∑
j=0

cijA
j
)
x[k − i]

= w[k] + (c10I+ c11A)x[k − 1]

+
(
c20I+ c21A+ c22A

2
)
x[k − 2] + . . .

+
(
cM0I+ . . .+ cMMAM

)
x[k −M ]

= w[k] + f(A, c,Xk−1)

(1)
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where Pi(A, c) is a matrix polynomial in A, cij are scalar polyno-
mial coefficients, c is a vector containing cij as entries,

Xk−1 =
(
x[k − 1]> x[k − 2]> . . . x[k −M ]>

)>
is a data vector collecting the immediate past M time samples, the
function f(A, c,Xk−1) =

∑M
i=1 Pi(A, c)x[k − i], and w[k] is

statistical noise. The matrix polynomials of the CGP AR(M ) model
Pi(A, c) are in the DSPG framework causal graph filters. In this
sense, “causal” refers both to the fact that we are only using infor-
mation from past observations of the process to model current and
future observations and to the fact that the A matrix is directed, and
can model non-reciprocal effects. However, this is not determining
true philosophical causation, but rather providing an increase in pre-
dictive power, similar to the notion described by Granger [8].

This model allows a signal on a node at the current time index
to be affected through network effects by signals on other nodes at
past times. This can model delays and difference processes in the
network, which is crucial for modeling dynamics in many real world
applications. The matrix polynomial Pi(A, c) is at most of order
min(i,NA), reflecting that x[k] cannot be influenced by more than
ith order network effects and in addition is mathematically limited
by NA, the degree of the minimum polynomial of A. This can be
interpreted as some corresponding speed for information to travel
through the graph. Typically, we take the model order M < NA.

3. ESTIMATING THE GRAPH STRUCTURE

The problem of interest in this paper is to estimate the graph adja-
cency matrix A that describes the spatial dependencies among the
N time series, since in many applications, this matrix A is unknown
and needs to be uncovered from the time series {xn[k]}. We con-
sider the problem within the scope of a restricted version of the
model, which yields a computationally efficient estimation algorithm
with theoretical properties that can be analyzed tractably. We present
results for the restricted model, noting that the analysis for the full
model is more involved and will be detailed in forthcoming work.

3.1. Restricted CGP (rCGP) Model

We focus our analysis to a particular subset of the CGP model class,
which we will denote by rCGP. In this model, we restrict the ma-
trix polynomials Pi(A, c) to be linear, corresponding to setting in
the matrix polynomial coefficients Pi(A, c) of the AR model the
coefficients cij = 0 for j ≥ 2 and all i, i.e., (1) is now reduced to

x[k] = w[k] +

M∑
i=1

Pi(A, c)x[k − i]

= w[k] + (c10I + c11A)x[k − 1]

+ (c20I + c21A)x[k − 2] + . . .

+ (cM0I + cM1A)x[k −M ]

= w[k] + f(A, c,Xk−1)

(2)

With this parameterization as written, there are issues with identifi-
ability of the model (2). In order to avoid these issues, we assume
that P1(A, c) 6= αI for any α ∈ R. Then without further loss of
generality, we can take a reduced parameterization with c10 = 0 and
c11 = 1 so that P1(A, c) = A.

To see this, consider the full parameterization using (A′, c′).
We show that we can use the reduced parameterization (A, c)

with P1(A, c) = A to represent the same process. We have
P1(A′, c′) = c′10I+c′11A

′ so A = c′10I+c′11A
′. Then Pi(A, c) =

ci0I+ci1A = (ci0+c′10ci1)I+ci1c
′
11A

′. By assumption, c′11 6= 0,
so we can set ci1 = c′i1/c

′
11 and ci0 = c′i0 − c′10c

′
i1/c

′
11. Then

Pi(A, c) = c′i0I + c′i1A
′ = Pi(A

′, c′). In the remainder of this
paper, we use the reduced parameterization.

3.2. Formulation and Algorithm

Here we describe our algorithm to estimate the graph. We formulate
this as the optimization problem

(Â, ĉ) = argmin
A,c

T−1∑
k=M

∥∥x[k]− f(A, c,Xk−1)
∥∥2
2
‖+λ‖A‖1

s.t. ‖c‖1 ≤ ρ

(3)

where ‖A‖1 =
∑
i,j |aij | is an `1 norm on matrix A and ‖c‖1 =∑

i,j |cij | is the usual `1 vector norm. The overall problem (3) is
nonconvex due to the multiplicative form of Pi(A, c), so we break
the problem down into convex steps:

1. Estimate Ri ≈ Pi(A, c) and set Â(1) = R̂1.

2. Repeat for t = 1, . . . , tmax or until convergence:

(a) Estimate ĉ(t) with fixed Â(t).

(b) Estimate Â(t+1) with fixed ĉ(t) and increment t.

In breaking down the problem into separate steps, we aim to gain
computational tractability at the potential expense of optimality from
solving the original problem. However, we later show that the pro-
cedure does not sacrifice too much in performance, and that the so-
lution we find approaches the optimal solution with high probability.

More specifically, to estimate {Ri} in step 1, we solve the fol-
lowing optimization:

{R̂i} = argmin
{Ri}

T−1∑
k=M

∥∥x[k]− M∑
i=1

Rix[k − i]
∥∥2
2
+λ

M∑
i=1

‖Ri‖1 (4)

Here, instead of directly estimating A, we first estimate the value
of the matrix polynomials Pi(A, c). The first term is a model-
following term, and the `1 penalty term encourages sparsity in our
estimates Ri of the polynomials. This is a convex problem in Ri

and can be solved using conventional penalized least-squared tech-
niques.

To solve step 2a, we solve another optimization problem:

ĉ(t) = argmin
c

T−1∑
k=M

∥∥x[k]− f(Â(t), c,Xk−1)
∥∥2
2

s.t. ‖c‖1 ≤ ρ

(5)

The first term is again a model-following term, and the `1 constraint
on c encourages terms of cij towards 0. This constraint can be seen
as allowing for automatic model order selection, as we may expect
the coefficients for high order lags to fall off in magnitude. Note that
this problem is convex in c since A(t) is fixed, and can be solved by
standard constrained least-squares methods.

Finally, we solve step 2b using the optimization problem:

Â(t+1) =argmin
A

T−1∑
k=M

∥∥x[k]−f(A, ĉ(t),Xk−1)
∥∥2
2

+λ‖A‖1 (6)
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The first term is still the model-following term, and the `1 penalty
on A now encourages the graph to be sparse. This corresponds to
our desire to have an interpretable yet still interesting and descriptive
model of the inter-agent interactions. This is also convex in A for
fixed c(t), and can be solved with sparse least-squares procedures.

To obtain an estimate from this algorithm, we can terminate at
any point after obtaining the initial estimate (Â(1), ĉ(1)), i.e., after
completing step 2a for the first time.

4. PERFORMANCE GUARANTEES

Here we outline the theoretical performance guarantees of the esti-
mate (Ã, c̃) = (Â(1), ĉ(1)). Our error metric of interest will be:

ε(t) =E
[

1

N

∥∥∥x[k]− f(Â(t), ĉ(t),Xk−1)
∥∥∥2
2

]
− E

[
1

N
‖x[k]− f(A, c,Xk−1)‖22

] (7)

which is the average excess prediction risk. In words, under the
setting of predicting new samples, this quantity is the per-node error
of the estimator above the intrinsic randomness of the process. Here
the expectation is taken over a new samples zk drawn independently
of the samples used to estimate (Â(t), ĉ(t)).

4.1. Assumptions

We lay out the specific assumptions about the process we make in
order to derive our guarantees:

(A1) The model class is accurate:
E[x[k] |Xk−1] = f(A, c,Xk−1).

(A2) The noise is uncorrelated with the process and itself:
E[x[j]w[k]>] = 0 and E[w[j]w[k]>] = 0 for j ≤ k. In
addition, the noise is multivariate Gaussian with distribution
w[k] ∼ N (0,Σw), with 0 < σ` ≤ ‖Σw‖ ≤ σu being lower
and upper bounded.

(A3) The process is stationary and is in steady state when we be-
gin our observation. Under this assumption, the marginals
distributions and expectations can be meaningfully defined,
E[x[k]] = 0, Σ0 = E[x[k] x[k]>], and Σ = E[zkz

>
k ] where

zk = (x[k]> X>k−1)>.

(A4) The stationary correlation matrices are absolutely summable:
∞∑

i=−∞
‖E[x[k]x[k − i]>]‖ = G.

This is a slightly stronger condition than stationarity.

(A5) The true adjacency matrix and filter coefficients are sparse and
bounded: ‖A‖1 ≤ SN � N2, ‖A‖0 ≤ sN � N2, and
‖A‖ ≤ L; ‖c‖2 ≤ ‖c‖1 ≤ ρ. Also, 1 < Q = (1 +
L)(1 + ρ) ≤ 2. This is also a slightly stronger condition than
stationarity. The quantities with subscripts may grow with N .

(A6) The sample size is large enough relative to the “stability” of
the process:

K = T −M ≥ Cω2 sN (logM + logN)

for some constantC > 0 and ω = σuQ
2

σ`[2−Q]2
. Here ω is related

to measures of “stability” of the process [9].

4.2. Theoretical Performance

Here, we present the main result and a brief sketch for its proof. We
note that the lemmas of intermediate results and the full proof take
several pages and are omitted due to lack of space.

Theorem 1 (Main result). Under Assumptions (A1)−(A6), for some
constants di > 0 and for all 0 ≤ β ≤ 1, with probability at least

1−
(

2

e

( 2e

NT

)NT
2

+ 2 exp
(
− 3

64
(NT )β

)
+ d2 exp

(
− d3
ω2
K
))

the error satisfies

ε(1) ≤d1(g(Q)σu)2
(

logM + logN

NK

)
2sNQ

2

σ`
tr(Σ0)

+
2GQ2T

K(NT )(1−β)/2

Proof Sketch. Following similar algebra as [10], we can show that

ε(1) =
1

N
E
[∥∥∥f(Ã, c,Xk−1)− f(A, c,Xk−1)

∥∥∥2
2

]
+

1

N

(
E
[∥∥x[k]−f(Ã, c̃,Xk−1)

∥∥2
2
−
∥∥x[k]−f(Ã, c,Xk−1)

∥∥2
2

])
We can bound the first term using a result from AR estimation [9].
With a bit of additional algebra and Gaussian concentration re-
sults [11], we can bound the second term (in the parentheses) by its
empirical version with high probability.

5. EXPERIMENTS

We ran several Monte-Carlo experiments to study the empirical
behavior of the algorithm, varying the number of nodes N =
50, 100, 200, the number of observed time samples T = pN with
p = 0.5, 0.75, 1, 1.25, 1.5, 2, and the network topologies. For each
topology, we first generated a weighted adjacency matrix A and cor-
responding coefficients c to make a stable system of order M = 3
for each pair of (N,T ). Then with that fixed (A, c), we gener-
ated 20 independent sets of multivariate time series data from an
rCGP process with parameters (A, c). Finally, we found estimates
(Ã(i), c̃(i)) with i = 1, 2 . . . , 20 for each of the 20 sets. Next, we
computed the empirical error in A as

ε̂A =
1

20N

20∑
i=1

‖Ã(i) −A‖2F

and the empirical excess prediction error

ε̂(1) =
1

20N

20∑
i=1

T−1∑
k=M

1

K
‖x(i)[k]− f(Ã(i), c̃,X

(i)
k−1‖

2
2.

The random graphs were generated with 3 different topologies:
Stochastic Block Model (SBM) [12], Erdös-Renyi (ER) [13], and
Power Law (PL). Examples of these topologies can be seen in
figure 1.

The SBM graph was generated by generating 10 clusters with
each node having uniform probability of belonging to a cluster.
Edges between nodes were generated according to assigned intra-
and inter- cluster probabilities. The edges generated were assigned
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(a) Stochastic Block Model, N=200

(b) Erdös-Renyi, N = 50 (c) Power Law, N = 200

Fig. 1. Example graph topologies used in experiments

weights from a Laplacian distribution with rate λe = 2. Finally, the
matrix was normalized by 1.1 times its largest singular value.

The ER graph was generated by taking edges from a standard
normal N (0, 1) distribution and then thresholding edges to be be-
tween 1.6 and 1.8 in absolute to yield an effective probability of an
edge pER ≈ 0.04. The edges were soft thresholded by 1.5 to be be-
tween 0.1 and 0.3 in magnitude. Finally, the matrix was normalized
by 1.5 times its largest eigenvalue.

The PL graph was generated by starting with a 15 node ER graph
with connection probability 3/4. New nodes were connected by one
new edge of weight 1 to an existing node according to a modified
preferential attachment scheme [14]. The direction of the edge was
determined by a binary random variable. The probability of the new
node connecting to an existing node was proportional to the existing
node’s out-degree (in-degree) if the edge was pointing toward (away
from) the new node. The diagonal was set to −1/2. Lastly, the
matrix was normalized by 1.5 times its largest singular value.

In figure 2, we see three different behaviors. For the SBM, both
ε̂A and ε̂(1) decrease with both N and T . However in the ER model,
ε̂A decreases with both N and T while ε̂(1) only decreases with
T . This may be partly due to the fact that the sparsity of the ER
model scales as sN ∼N2, which is fairly fast, while the sparsity in
the SBM scales as sN ∼ N . This may be slow enough that even
for increasing N we observe decreasing error. Note that in the PL
model, ε̂A decays with N but does not decay significantly with T .
This may be partially due to the fact that the matrix A is somewhat
poorly conditioned, since most nodes may have no incoming or no
outgoing edges, while a few nodes have many edges. Consequently,
ε̂(1) also does not show significant decay with T , although there is
still decay with increasing N .
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Fig. 2. Average errors in A and excess prediction errors for 3 differ-
ent random graph topologies

6. CONCLUSION

We presented a DSPG based model that uses directed, weighted ad-
jacency matrices A to describe the dependencies among time series
generated by systems of interacting agents. We outlined a computa-
tionally tractable algorithm for estimating the matrix A and matrix
polynomial coefficients c. We sketched the proof for performance
guarantees on prediction under assumptions on the properties of the
dynamic process and true parameter values. Finally, we observed
that the algorithm performance is consistent with the error expres-
sion for several random graph models.

Our future work will relate the estimation and prediction per-
formance to the network topology and consider the full CGP model
rather than the rCGP model studied in this paper.
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