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ABSTRACT

We study the problem of recognition of fingerspelled letter se-
quences in American Sign Language in a signer-independent
setting. Fingerspelled sequences are both challenging and im-
portant to recognize, as they are used for many content words
such as proper nouns and technical terms. Previous work
has shown that it is possible to achieve almost 90% accura-
cies on fingerspelling recognition in a signer-dependent set-
ting. However, the more realistic signer-independent setting
presents challenges due to significant variations among sign-
ers, coupled with the dearth of available training data. We
investigate this problem with approaches inspired by auto-
matic speech recognition. We start with the best-performing
approaches from prior work, based on tandem models and
segmental conditional random fields (SCRFs), with features
based on deep neural network (DNN) classifiers of letters and
phonological features. Using DNN adaptation, we find that it
is possible to bridge a large part of the gap between signer-
dependent and signer-independent performance. Using only
about 115 transcribed words for adaptation from the target
signer, we obtain letter accuracies of up to 82.7% with frame-
level adaptation labels and 69.7% with only word labels.

Index Terms— American Sign Language, fingerspelling,
deep neural network, adaptation, segmental CRF

1. INTRODUCTION

Automatic sign language recognition is a nascent technol-
ogy that has the potential to improve the ability of Deaf and
hearing individuals to communicate, as well as Deaf indi-
viduals’ ability to take full advantage of modern information
technology. For example, online sign language video blogs
and news1 are currently almost completely unindexed and un-
searchable as they include little accompanying annotation.

Research on this problem has included both speech-
inspired approaches and computer vision-based techniques,
using either/both video and depth sensor input [1, 2, 3, 4, 5, 6,
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the views of the funding agency.

1E.g., http://ideafnews.com, http://aslized.org.

7, 8, 9]. We focus on recognition from video, for applicability
to existing recordings. Before the technology can be applied
“in the wild”, it must overcome challenges posed by visual
nuisance parameters (e.g., lighting, occlusions) and signer
variation. Annotated data sets for this problem are scarce, in
part due to the need to recruit signers and skilled annotators.

We consider American Sign Language (ASL), in particu-
lar the fingerspelling component: the spelling out of a word
as a sequence of handshapes or hand trajectories correspond-
ing to individual letters. Fig. 1 gives example fingerspelling
sequences. Fingerspelling accounts for roughly 12-35% of
ASL [10] and is typically used for proper nouns or borrow-
ings from English, which can often be the most important
content words. Some aspects of fingerspelling can be charac-
terized through the phonology of handshape [11, 12], which
can be described in terms of phonological features. Most
prior research on fingerspelling recognition has focused on
constrained tasks such as single-letter or handshape classi-
fication or word recognition from a known vocabulary [13,
14, 15, 16, 17, 18, 19]. For the unconstrained letter sequence
recognition problem, Kim et al. [7, 8] obtained ∼ 90% aver-
age letter accuracies in a signer-dependent setting, using ei-
ther tandem hidden Markov models (HMMs) or segmental
conditional random fields (SCRFs), with features from neural
network classifiers of letters and phonological features. That
work used the largest video data set of which we are aware
containing unconstrained, connected fingerspelling, consist-
ing of four signers each signing 600 word tokens for a total of
∼ 350k image frames.

In this paper we consider the problem of signer-indepen-
dence in unconstrained fingerspelling sequence recognition,
in the context of limited training data. Prior work has ad-
dress signer adaptation for large-vocabulary German Sign
Language recognition [9], but to our knowledge this paper
is the first to address adaptation for fingerspelling. We in-
vestigate approaches to signer-independence including speed
normalization and neural network adaptation. The adaptation
techniques are largely borrowed from speech recognition re-
search, but the application is quite different in that the overall
amount of data is much smaller and the types of variation
are different. We find that the simple signer normalization is
ineffective, while DNN adaptation is very effective.
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Fig. 1. Images and ground-truth segmentations of the fingerspelled word ‘TULIP’ produced by two signers. Image frames are
sub-sampled at the same rate from both signers to show the true relative speeds. Asterisks indicate manually annotated peak
frames for each letter. “<s>” and “</s>” denote non-signing intervals before/after signing.

2. METHODS

The task is to convert a video (a sequence of images), as in
Fig. 1, to a sequence of letters. The segmentation into let-
ters is unknown, so this is a sequence prediction task analo-
gous to connected phone or word recognition. We start with
the recognition approaches that have achieved the best prior
results on this task [7, 8], with updates for improved perfor-
mance with deeper neural networks. We next briefly describe
the recognizers, the neural network classifiers and adaptation.

2.1. Recognizers

The first recognizer is a tandem model [20] based on [7].
Frame-level features are fed to neural network classifiers, one
of which predicts the frame’s letter label and six others which
predict handshape phonological features.2 Classifier outputs
are concatenated with the image features, after a dimension-
ality reduction, and input to a hidden Markov model (HMM)
recognizer with Gaussian mixture observation densities.

The second recognizer is a segmental CRF (SCRF) model
based on [8]. SCRFs [21, 22] are conditional log-linear
models with feature functions that can be based on variable-
length segments of input frames, allowing for great flexibility
in defining feature functions. As in [8], we use an SCRF
to rescore lattices produced by a baseline frame-based rec-
ognizer (in this case, the tandem model). We use the same
feature functions as in [8], which include language model
features, a feature that measures agreement with the base-
line recognizer, means of letter/phonological feature neural
network classifier outputs over each segment, and “peak de-
tection” features that measure the dynamics of each segment.

Finally, we also use a first-pass decoding SCRF from Tang
et al. [23], which is independent of any frame-based recog-
nizer. We use the same feature functions as in [23], namely
average DNN outputs over each segment, samples of DNN
outputs within the segment, duration and bias, all lexicalized.

2See [11, 12, 7] for details of the phonological features.

2.2. DNN adaptation
The DNNs are first trained in a signer-independent way on all
but the test signer, using an L2-regularized cross-entropy loss.
The inputs are the image features concatenated over a multi-
frame window, which are fed through several fully connected
layers followed by a softmax output layer. Inspection of data
such as Fig. 1 reveals the main sources of signer variation:
speed, hand appearance, and non-signing motion variation be-
fore/after signing. The speed variation is large, with a factor
of 1.8 between the fastest and slowest signers. In the absence
of adaptation data, we consider a simple speed normalization:
We augment the training data with resampled image features,
at 0.8x and 1.2x the original frame rate.

If we have access to some labeled data from the test
signer, but not a sufficient amount for training full signer-
specific DNNs, we can apply adaptation. A number of DNN
adaptation approaches have been developed (e.g., [24, 25,
26, 27]). We first consider two simple approaches based
on linear input networks (LIN) and linear output networks
(LON) [28, 29, 30], shown in Fig. 2. Most of the network
parameters are fixed; only a limited set of weights at the input
and output layers are learned. In the first approach (LIN+UP
in Fig. 2), we apply a single affine transformation WLIN to the
static features at each frame (before concatenation) and feed
the result to the trained signer-independent DNNs. We jointly
learn WLIN and adapt the last (softmax) layer weights by min-
imizing the same cross-entropy loss on the adaptation data,
and “warm-start” the softmax layer with the learned signer-
independent weights. The second approach (LIN+LON in
Fig. 2) uses the same input adaptation layer, but rather than
adapting the softmax weights, it removes the softmax output
activation and adds a new softmax output layer WLON for the
test signer, trained jointly with the same cross-entropy loss.
Finally, we also consider adaptation by fine-tuning; that is,
updating all of the DNN weights on adaptation data starting
from the signer-independent weights. The adaptation can
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Fig. 2. Left: Unadapted DNN classifier; middle: adaptation via linear input network and output layer updating (LIN+UP);
right: adaptation via linear input network and linear output network (LIN+LON).

use either ground-truth frame-level letter labels (using human
annotation as described in [7]) or labels obtained by forced
alignment if only word labels are available.

3. EXPERIMENTS

We use the ASL video data set of [8], comprising four signers
each fingerspelling 600 word tokens consisting of two repe-
titions of a 300-word list, including common English words,
names, and foreign words. Annotators marked the peak of ar-
ticulation of each letter, and the annotations were converted
to a “ground-truth” frame labeling by assuming that the letter
boundaries occur mid-way between peaks. Following [8], the
hand portion of each image is extracted via hand detection and
segmentation using a signer-specific Gaussian color model,
followed by suppression of irrelevant pixels. The extracted
hand images are resized to 128 × 128 and Histogram of Gra-
dient (HoG) [31] features are extracted using multiple spatial
grids (4 × 4, 8 × 8, and 16 × 16), followed by dimensionality
reduction with principal components analysis (PCA).

3.1. Frame classification

The initial unadapted signer-independent DNNs are trained
on all but the test signer for each of the seven tasks (let-
ters and the six phonological features). The input is the
128-dimensional HoG features concatenated over a 21-frame
window, and the networks have three hidden layers of 3000
ReLUs [32]. Cross-entropy training is done with a weight
decay penalty of 10−5 via stochastic gradient descent (SGD)
over 100-sample minibatches for up to 30 epochs, with
dropout [33] at a rate of 0.5 at each hidden layer, fixed
momentum of 0.95, and initial learning rate of 0.01, which is
halved when held-out accuracy stops improving. These hy-
perparameters were tuned on held-out (signer-independent)
data in initial experiments, not reported here in the interest of
space. We pick the best-performing epoch on held-out data.

We next consider DNN normalization and adaptation with
different types and amounts of supervision. For LIN+UP and
LIN+LON, we adapt by running SGD over minibatches of
100 samples with a fixed momentum of 0.9 for up to 20
epochs, with initial learning rate of 0.02 (which is halved
when accuracy stops improving on the adaptation data). For
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Fig. 3. DNN frame accuracies with and without normal-
ization/adaptation. The horizontal axis labels indicate the
amount of adaptation data (0, 1, 2, 3 = none, 5%, 10%, 20% of
the test signer’s data, corresponding to no adaptation, ∼ 29,
∼ 58, and ∼ 115 words). GT = ground truth labels; FA =
forced alignment labels; FT = fine-tuning.

fine-tuning, we use the same SGD procedure as for the signer-
independent DNNs. We pick the epoch with the highest ac-
curacy on the adaptation data. The resulting frame accuracies
are given in Fig. 3. In addition, Fig. 3 includes the result
of speed normalization for the case of letter classification.
Speed normalization provides consistent but very small im-
provements, while adaptation gives large improvements in
all settings. LIN+UP slightly outperforms LIN+LON, and
fine-tuning outperforms both LIN+UP and LIN+LON. For
letter sequence recognition in the next section, we adapt via
fine-tuning using 20% of the test signer’s data.

Fig. 4 further analyzes the DNNs via confusion matri-
ces. One of the main effects is the large number of incor-
rect predictions of the non-signing classes (<s>, </s>). We
observe the same effect with the phonological feature classi-
fiers. This may be due to the previously mentioned fact that
non-linguistic gestures are variable and easy to confuse with
signing when given a new signer’s image frames. The confu-
sion matrices show that, as the DNNs are adapted, this is the
main type of error that is corrected.
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Tandem HMM Rescoring SCRF 1st-pass SCRF
Signer 1 2 3 4 Mean 1 2 3 4 Mean 1 2 3 4 Mean
No adapt. 45.9 45.3 37.4 42.5 42.8 47.4 48.8 38.9 43.7 44.7 44.7 46.7 27.5 38.6 39.4
Forced align. 69.8 71.5 60.4 63.9 66.4 70.5 74.0 61.8 65.5 68.0 75.6 75.1 63.5 64.5 69.7
Ground truth 78.0 87.0 68.4 78.6 78.0 77.6 86.5 70.5 78.6 78.3 84.8 89.4 75.1 81.6 82.7

Table 1. Letter accuracies (%) on four test signers.

No Adapt. LIN+UP (Forced-Align.) LIN+UP (Ground Truth)
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Fig. 4. Confusion matrices of DNN classifiers for one test signer (Signer 1). 20% of the test signer’s data (115 words) was used
for adaptation, and a disjoint 70% was used to compute confusion matrices. Each matrix cell is the empirical probability of the
predicted class (column) given the ground-truth class (row). The diagonal has been zeroed out for clarity.

3.2. Connected letter recognition

In connected letter recognition, we measure performance via
the letter accuracy, analogously to the word or phone accuracy
in speech recognition. Table 1 shows the letter accuracies ob-
tained with the tandem, rescoring SCRF, and first-pass SCRF
models with DNN adaptation via fine-tuning, using different
types of adaptation data. For all models, we do not retrain
the models with the adapted DNNs, but tune several hyperpa-
rameters3 on 10% of the test signer’s data. The tuned models
are evaluated on an unseen 10% of the test signer’s remaining
data; finally, we repeat this for eight choices of tuning and test
sets, covering the 80% of the test signer’s data that we do not
use for adaptation, and report the mean letter accuracy over
the test sets.

As shown in Table 1, without adaptation both tandem and
SCRF models do poorly, achieving only roughly 40% letter
accuracies, with the rescoring SCRF slightly outperforming
the others (recall that signer-dependent recognition achieves
about 90% letter accuracies [8]). With adaptation, how-
ever, performance jumps to up to 69.7% letter accuracy with
forced-alignment adaptation labels and up to 82.7% accuracy
with ground-truth adaptation labels. All of the adapted mod-
els perform similarly, but interestingly, the first-pass SCRF is
slightly worse than the others before adaptation and better (by
4.4% absolute) after ground-truth adaptation. One hypothesis

3See [7, 8, 23] for details of the tuning parameters.

is that the first-pass SCRF is more dependent on the DNN
performance, while the tandem model uses the original image
features and the rescoring SCRF uses the tandem model hy-
potheses and scores. Once the DNNs are adapted, however,
the first-pass SCRF outperforms the other models.

4. CONCLUSION

In this study of signer-independent and adapted ASL finger-
spelling recognition, we have seen that fingerspelling has
great variability in speed, hand appearance, and appearance
of non-signing gestures. We have improved performance on
new signers via adaptation of DNNs in tandem and SCRF
recognizers. Several DNN adaptation approaches are suc-
cessful, with the largest improvements coming from simple
fine-tuning on adaptation data. This approach improves letter
accuracies from around 40% (unadapted) to up to 69.7% with
weak word-level supervision and up to 82.7% with ground-
truth frame labels for the adaptation data. While the models
perform similarly, the best adapted model is a first-pass SCRF.
The main DNN improvements come from resolving confu-
sions between actual letters and the non-signing (“silence”)
class. Future work will continue to improve the models and
adaptation approaches, as well as address other types of vari-
ability that are needed to port the models to video data “in the
wild”.
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