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ABSTRACT

Many state-of-the-art solutions for the understanding of speech data
have in common to be probabilistic and to rely on machine learn-
ing algorithms to train their models from large amount of data. The
difficulty remains in the cost of collecting and annotating such data.
Another point is the time for updating an existing model to a new do-
main. Recent works showed that a zero-shot learning method allows
to bootstrap a model with good initial performance. To do so, this
method relies on exploiting both a small-sized ontological descrip-
tion of the target domain and a generic word-embedding semantic
space for generalization. Then, this framework has been extended to
exploit user feedbacks to refine the zero-shot semantic parser param-
eters and increase its performance online. In this paper, we propose
to drive this online adaptive process with a policy learnt using the
Adversarial Bandit algorithm Exp3. We show, on the second Dia-
log State Tracking Challenge (DSTC2) datasets, that this proposition
can optimally balance the cost of gathering valuable user feedbacks
and the overall performance of the spoken language understanding
module.

Index Terms— Spoken language understanding, zero-shot
learning, bandit problem, out-of-domain training data, online adap-
tation.

1. INTRODUCTION

In a dialogue system, the Spoken Language Understanding (SLU)
module is dedicated to extract for each incoming user utterance
some hypotheses about its semantic content (e.g. meaning). Gen-
erally, the latter is expressed as a sequence of Dialogue Acts (DAs)
in the form acttype (slot=value). The acttypes are task-
independent and convey the user intent behind its communicative
act, while slots and values are domain dependent and corre-
spond to the specific pieces of information that the system can
manipulate (e.g. entries in a back-end database, commands to a
robot/device). For instance, the utterance “hello i am looking for
a french restaurant in the south part of town” corresponds to the
dialogue act sequence “hello (), inform(food=french),
inform(area=south)”.

State-of-the-art SLU systems are based on probabilistic ap-
proaches trained on a large amount of data with various machine
learning methods (see for instance [1, 2, 3, 4]). Training corpus
size has an important influence on the quality of the system. But
collecting such a corpus, despite consequent efforts to reduce it such
as in [5], is costly in time and human expertise. Most of the time
dedicated to create a dialogue system is for the data collection and
annotation [6].

Some research works have focused on the use of lightly super-
vised [7, 8, 9], or unsupervised [10, 11] training approaches to cope
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with the lack of annotated resources by either exploiting the seman-
tic web for mining additional training data and enriching classifi-
cation features or proposing unsupervised annotation process on a
close-domain corpus [5, 12]. With the same objective of minimis-
ing the cost of data collection, some other works focused on porting
a system across language and domain [13, 14]. Many propositions
consider an Active Learning (AL) procedure to reduce corpus anno-
tation and verification time [15, 16, 17], or to build a mini corpus
to bootstrap a first system further used in an iterative data collection
process, as in [18]. In [19] an instance-based approach for online
adaptation of semantic models is presented, while [20] proposes a
supervised approach for updating the SLU models with a limited su-
pervision given by users calling the system.

In [21, 22] a zero-shot learning method for SLU, the Zero-Shot
Semantic Parser (ZSSP), based on word embeddings (word2vec [23])
is applied to generalize an initial knowledge base about the task at
hand (e.g. database entries, partial ontological description). This
approach requires neither annotated data nor in-context data and
can reach instantly state-of-the-art performance. Along this line, an
online adaptive strategy was also proposed to refine the model in an
incremental fashion with a light supervision. Indeed, with this strat-
egy, the users were only asked to confirm some hypotheses made
by the system (yes/no questions) but not to explicitly correct any
error. As such it allows them to correct some classification errors
but never to add new concepts or values in the model and thus does
not allow any domain extension. In this paper, we propose to extend
this online adaptation strategy in order to also address this issue and
thus be able to expand the model with new knowledge continuously.

To define this new strategy we propose to cast the online AL
problem of the understanding module into an Adversarial Bandit
one. This setting aims to minimize the supervision costs while ask-
ing the user questions with the maximum impact on the model. Ban-
dit algorithms have been widely studied in the machine learning
community [24, 25] with the objective to obtain the best solutions to
the exploration-exploitation dilemma. They choose between exploit-
ing options that yielded the best output (payoffs) in previous itera-
tions and exploring new options that might give higher performance
in the future. Only few works have already employed this kind of
methods to optimise a vocal interaction system. For instance [26]
applied a multiclass Bandit algorithms to train a call-type classifier
with yes/no user feedbacks. We show that our proposed technique al-
lows to achieve good performance with a low and adjustable supervi-
sion cost on the second Dialog State Tracking (DSTC?2) testbed [27].

In Section 2 the basis of our baseline ZSSP SLU model are re-
called. Section 3 describes the proposed bandit-based strategy for
the online adaptation employed for its refinement. Then, the experi-
mental study is presented in Section 4 followed by some concluding
remarks and perspectives.

ICASSP 2016



"*~<hello <=> hello()
“french <=> inform(food=french)

“Inot french <=> deny(food=french)

T -~ bye <=>bye()

Fig. 1: ZSSP model

2. ZERO-SHOT LEARNING MODEL FOR SPOKEN
LANGUAGE UNDERSTANDING

The SLU model employed in our study is the ZSSP zero-shot learn-
ing model proposed in [21, 22]. The latter, depicted in Figure 1,
makes use of three main components. The first one is a semantic
feature space F' based on word embeddings learnt with neural net-
work algorithms on open domain data [23, 28].

The second component is a semantic knowledge base K which
contains some examples of lexical segments or phrases (called
chunks hereafter) associated to each targeted DA (as inferred from
the ontology and database). In K, assignment coefficients measure
the correspondence between a chunk and any known DAs. Indeed,
these values, which are in range [0, 1], denote how confident the
model is about the fact that a chunk is related to a semantic tag (the
greater the more confident the model is). According to [21], these
coefficients, with initial values set to 1 for the first set of chunk/DA
pairs extracted from the ontology, could be re-evaluated afterwards
in light of users positive/negative feedbacks and estimated for newly
introduced chunks during the online process. Then, the chunks
in K are projected into F', as the sum of their composing words
D-dimensional vector representations (embeddings).

Finally, the third component of the baseline ZSSP model is the
parser itself. It composes a scored graph (finite-state machine) of se-
mantic tag sequence hypotheses from any novel user utterance. All
possible contiguous word sequences (chunks) are considered in the
parsing algorithm (the combinatory explosion is limited in our case
as the utterance length is generally below 10 words). For example
if the user says “yeah downtown”, as in Fig. 1, 3 different chunks
are considered: “yeah”, “downtown” and “yeah downtown”. These
chunks are mapped to the feature space I’ with the same method
used to map K’s chunks into F. The resulting real valued vec-
tors (blue circles in Fig. 1) are then compared in terms of distance
(e.g. cosine distance in our work) to the known chunk vectors (black
crosses in Fig. 1). Then, a dot product between the k-most similar
vectors and their corresponding assignment coefficients in K matrix
is computed to attribute each chunk a list of ordered (and scored)
semantic hypotheses. Then a best-path decoding on the finite-state
machine (highlighted path in Fig. 1) derives the best semantic se-
quence hypothesis at the utterance level. Since we deal with edge
weights closely related to distance, we employ a shortest-path strat-
egy in this work.

3. ONLINE INTERACTIVE REFINEMENT PROBLEM

The main objective of the work presented in this paper is to extend
the initial online adaptation strategy (described in [21]) to also al-
low concept creation and thus domain extension. In this preliminary

study, we adopt a simple strategy based on an Adversarial Bandit
algorithm to address the model refinement problem. Before going
further in the formulation, we first introduce this problematic on a
static case.

3.1. Static case

We posit that the system has the choice between several actions (aka
the arms in the bandit literature) in order to improve the DAs auto-
matically associated to a user utterance. So, we first need to define
the considered action space. However, we can already foresee that
each action implies the collaboration of the user at a different level.
Therefore, we introduce a measure of user effort regarding the action
chosen by the system, in the form of a cost function. We also define
an inefficiency measure of the model that we should try to minimize
over time. This metric allows us to quantify the model improvement
made by a specific action. Finally the model Refinement problem is
formulated as a linear optimization problem when the system has the
full knowledge of the objective function.

Actions space and user effort cost function. Once the user pro-
vides the sentence, the system can choose one action (from a proba-
bility distribution) among a set Z of M actions. In this preliminary
setup, we consider a case where /M = 3 and Z can be defined as :

7 := {Skip, YesNoQuestions, AskAnnotation}.

Let ¢ € Z be the action index. We assume that the user effort ¢(i) €
N can be measured by the number of exchanges between the system
and the user in order to perform action ¢. The different actions and
associated user efforts are described below:

e Skip: Skip the refinement process. The cost of this action is
always set to 0 (¢(skip) = 0).

e YesNoQuestions: Refine the model by considering yes/no
user responses about the correctness of the detected DAs
in the best semantic hypothesis. ¢(YesNoQuestions) = 1
for the whole sentence acceptance and in case of rejection
¢(YesNoQuestions) is equal to the number of confirmation
requests (+1 per DA in the best semantic hypothesis).

e AskAnnotation: Ask the user to annotate the incoming ut-
terance. ¢(AskAnnotation) = 1 if the sentence is accepted
straightaway.  Otherwise ¢(AskAnnotation) € {2,3,4}
times the sum of annotated DAs (as given by a reference
annotation in our simulated setup, see below). Here, we
assume that the user first informs the system about the word
boundaries of the concept he plans to annotate (+1), and then
that the system sequentially asks for acttype, slot and value
if necessary' (41 per interim question). It should be noted
that new slots and values can be added by the user in this
way (domain extension).

Inefficiency measure. In order to estimate the model performance
over the current user utterance without the need of semantic tran-
scription, we choose to introduce a measure extracted dynamically
from the parser output. To integrate a global minimisation optimisa-
tion problem (with cost function) inefficiency is measured instead of
efficiency. So, let d € [0, 1] be the average weights of the edges® in
the best path of the finite state machine used by the semantic parser
(see Fig 1). As explained in Section 2, these weights correspond

Some acttypes are empty, such as hello() or just contain a unique slot
without value such as request( food)
2By removing the word penalty applied in the semantic decoding
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to the dot product of the cosine distance between each chunk con-
sidered in the best path and the assignment coefficients of the k
most similar examples in K. Thus, the greater it is, the lower the
model fits the utterance. Indeed, a high average weight traduces the
fact there are no corresponding (close enough) known examples in
K. Depending on the chosen refinement action ¢, d is updated to
d'(i) € [0,1] due to following model modification. Here we depict
the main mechanisms:

e Skip: Since this action does not imply model changes, the
inefficiency measure remains constant. Thus, d’(Skip) = d.

e YesNoQuestions: By using this action, each of the m DAs
in the best semantic hypothesis will be confirmed or negated
by the user. According to [21], these user feedbacks are
converted into a set U of m tuples U := ((¢1, 11, fi))1<i<m.
where (c;, 17) is a chunk/tag pair proposed to the user and
fi is her feedback (1 positive, O negative). Given K and
U after each interaction, the algorithm presented in [21] is
used to update K into K'. Basically, these tuples are used
to update the positive and negative counts observed up to
now for the involved chunks® and exploit vicinity in the se-
mantic space F' to fill the unknown assignation values. So,
d' (YesNoQuestions) = & where § is the new average
weight of the utterance with newly updated K.

e AskAnnotation: If the sentence is accepted straightaway we
consider that all the chunk/tag pairs extracted from the best
semantic hypothesis received a positive user feedbacks. Oth-
erwise, we employ the m’ annotated chunk/tag pairs* are cast
into tuples U := ((¢;,T1,1)1<i<m’)- In this specific case,
new semantic output tags and values can be added. Due to
the fact that parts of the user utterance are now in K’ as pos-
itive examples, d’' (Ask Annotation) = 0.

Loss function. Finally we need to define a loss function such that
the system, by optimize it, will minimize at the same time updated
inefficiency measure d’ (i) and the user effort ¢ (7). Thus we propose
to define the loss function (%) € [0, 1] as the convex combination of
the two measures:

)= a6 +a-n AL,
~—— max
N—— —

system improvement
user effort

where v € [0, 1] balance the importance of information improve-
ment and user effort for the system and ¢,,q € Ny is the maxi-
mum number of exchanges between the system and the user (in a
same turn/round). Let p € A(3) := {q € R} | Diera(i) = 1}
the probability distribution over the different actions. The Refine-
ment objective is defined as:

min)E‘[l] = Zp(i)l(i).

PEA(3

If we have a full knowledge of the cost (i) for each action 4,
the Refinement problem is equivalent to solve min;{l(¢)}. How-
ever in a real scenario, this framework cannot be applied as the
loss function [(z) is not known. For instance, when the sys-
tem uses i = YesNoQuestions, d (YesNoQuestions) and
?(YesNoQuestions) will be revealed only after the action is

3Initial set of chunk/tag pairs is initialized by considering these examples
as confident and positive user feedbacks

“Notice that i’ may not be equal to m because the user is able to change
the DA boundaries

made. Moreover the system receives several sentences, at differ-
ent times, from different users. Thus comes the need to adapt the
Refinement model to an adaptive framework (Adversarial bandit
scenario).

3.2. Adversarial Bandit case

In this paper we cast the AL problem of the SLU module into an
adversarial bandit problem. We consider the following scenario:

The adversarial bandit refinement problem
Known parameters: Set of actions Z and parameter v € [0, 1].
Ateach turn/round t = 1,2, ...

1. The system receives a user utterance and computes d;

2. The system chooses an action ¢; € Z, possibly with the
help of external randomization;

3. Once the action 7. is performed, the system computes:
- The inefficiency measure d (i) with the collaboration
of the user;
- The user effort ¢+ (i:), which is the exchange count
between the system and the user to compute i;;
- The current loss is finally

Le(ie) = vy (i) + (1 — ) e (ir).

Goal: Find i1,12,..
mizes the total loss:

D hlin) =Y diie) + (1—) > dulin).

., such that for each 7', the system mini-

No assumptions are made about d;(i;) € [0,1] and ¢ (i) €
[0,1]. Thus we do not consider that the action i;—;, with [ €
{1,...,¢t — 1}, has a specific effect over the current loss function
at round ¢. This hypothesis is coming from the fact that the user
sentence cannot be accurately predicted without some strong pri-
ors. This scenario is thus closely related to a cold start problem.
These previous remarks lead us to choose the Adversarial Bandit
framework instead of the stochastic one.

An efficient algorithm to solve the Adversarial Bandit problem
with a small number of arms is the Exp3 [24]. A mathematical proof
of the relative high performance of this algorithm, in term of regret
optimisation, has been proposed in the monograph [25].

3.3. Simulated environment

In order to thoroughly test the policy learning algorithm we choose
in this preliminary study to simulate the user responses. To do so,
we have implemented an annotation evolution indicator able to deter-
mine the correctness of the machine proposition according to a given
reference. Due to the fact that acttype(slot = value) semantic tags
are not aligned with words in the considered corpus and since a word
level tagging is a prerequisite to annotate with chunk/tag pairs, we
choose to use an adapted unsupervised alignment procedure follow-
ing [29]. Thus, at each turn we have sufficient information to be able
to respond accurately to the machine action (reference DAs and their
alignments with words).

The simulated user employs 3 different actions. Affirm and
Negate are used to respond to a confirmation machine action
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Fig. 2: (a) Exp3 probability distribution over the action set (b) Impact of « over the cumulative user efforts (cumulative costs) (¢) Impact of
the number of dialogues handled by the online adaptive strategies on the F-score metric (DSTC2 test set).

(for AskAnnotation and YesNoQuestions). Inform are used ex-
clusively for AskAnnotation (e.g. Inform(acttype=request), In-
Jform(boundaries="austrian food”)). Here, we assume that anno-
tation subdialogues could be handle by the system which a high
level of accuracy (e.g. by using a well calibrated grammar and a
finely-tuned strategy).

4. EXPERIMENTS AND RESULTS

Experiments description. All experiments are based on the DSTC2
datasets [27] covering the domain of restaurant search. The research
challenge focused on tracking the user’s goal all along the dialogue,
here we only consider the SLU subtask. Thus, we exploit the fully
annotated data (e.g. transcriptions, dialogue-act semantics) as train-
ing and testing sets to evaluate our online learning approach on real-
istic dialogue settings. The approach is evaluated on the given tran-
scriptions of the challenge test set (9890 user utterances). A subset
of transcriptions from the DSTC2 training set (1472 transcribed user
utterances) is exploited to evaluate the online refinement model.

The ZSSP model used in the online learning is initialised as
in [21]. A 300-dimensional word2vec [23] word-embeddings model
is trained on a large amount of wide coverage and freely available
English corpora with the Skip-gram algorithm (10-word window).
The resulting model is expected to exhibit some linguistic regulari-
ties [30] as well as a linear structure. Hence it is possible to com-
bine the words by an element-wise addition of their word embed-
dings [31]. The technique is employed to directly map examples in
K to their corresponding word2vec representation seen as the sum
of individual word representations. As the cosine similarity/distance
has been proved to be well adapted to the word2vec model [23, 30],
this metric is used in a k-nearest neighbours classifier for the chunk
prediction and update. In the following experiments k = 1 and word
penalty is set to 0.5 for parsing and 20-nearest neighbours strategy
is employed to estimate unobserved assignment coefficients.

The task-dependent knowledge base used in these experiments is
derived from the DSTC2 challenge ontology and from few generic
dialogue knowledge. The semantics of the DSTC2 task is repre-
sented by 16 different act types, 8 slots and 215 values. In the con-
sidered ontology, slots and values have already lexicalised names
(e.g. “address”, “french”, etc.). The lexical forms (53) used to model
task-independent act types were manually written (for example “say
again” for the repeat act). In this work we deliberately degraded
K by removing important slots such as name and signature and val-
ues Thus we start with a relatively low F-score of 0.70 on the DSTC2
test transcription. Overall, 404 chunks are considered and assigned
to 78 (out of 663 possible) different semantic tags. Since Exp3 em-

ploys some form of stochastic exploration, we simulate 20 indepen-
dent online learning processes in parallel and average their figures in
all the results presented hereafter.

Experiments results. Figure 2(a) gives the evolution of the prob-
ability p; associated to each action as provided by Exp3. We can
observe that first each action is selected with comparable probabil-
ity, Exp3 is exploring. Then, as the number of turns increases, we
observe the rising influence of both YesNoQuestions and Skip ac-
tions which finally ends up with a clear advantage to the Skip action
when new information become harder to collect with respect to the
cost involved.

In Figure 2(b) we compare the effect of v on the Exp3 explo-
ration strategy, in terms of cumulative user effort, with the AskAnno-
tation and YesNoQuestions baselines (i.e. always performing these
actions). The measure is depicted for v € {0,0.3,0.5,0.7,1}. We
can observe that AskAnnotation is the more expensive followed by
YesNoQuestions. Varying the ~ tends to have a positive effect on
the evolution of the learning action. The greater -y is, the less costly
the learning action is. When the cost is ignored in the loss function
(v = 1.0), Exp3 tends to use costly action that reduce the distance
but it still can learn that YesNoQuestions are as useful as AskAnno-
tation at some point. Thus, v could allow to tune some application
specific trade-off between user effort and model efficiency.

Finally, in Figure 2(c) Exp3 is compared in terms of F-score
on DSTC?2 test set against the AskAnnotation and YesNoQuestions
baselines. As expected AskAnnotation performs the best. Indeed,
the use of new annotations allows ZSSP to dynamically cover ad-
ditional DAs and update K with robust examples. Due to the fact
that the goal of Exp3 is to find a trade-off between lower user effort
and model efficiency, this method is able to reach in a cost effective
manner performances closer to those obtained with AskAnnotation
compared with YesNoQuestions.

5. CONCLUSION

In this paper an Adversarial Bandit approach to refine a zero-shot
learning SLU, ZSSP, is proposed and tested in order to alleviate
a limited coverage on the domain specific semantics. It has been
proved to be efficient and to provide a practical way to formalise
a trade-off between user supervision effort and system efficiency.
Comparisons with other bandit techniques as well as generalisation
of the approach (e.g. extended action set) are in progress. Likewise
integration in a live dialogue system with seed expert users is an
ongoing work to study the effect over the overall dialogue progress
(task completion and user satisfaction) and the relation with the dia-
logue manager strategy learning.
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