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ABSTRACT

Spoken language interfaces are being incorporated into various de-
vices such as smart phones and TVs. However, dialogue systems
may fail to respond correctly when users’ request functionality is not
supported by currently installed apps. This paper proposes a feature-
enriched matrix factorization (MF) approach to model open domain
intents, which allows a system to dynamically add unexplored do-
mains according to users’ requests. First we leverage the structured
knowledge from Wikipedia and Freebase to automatically acquire
domain-related semantics to enrich features of input utterances, and
then MF is applied to model automatically acquired knowledge, pub-
lished app textual descriptions and users’ spoken requests in a joint
fashion; this generates latent feature vectors for utterances and user
intents without need of prior annotations. Experiments show that the
proposed MF models incorporated with rich features significantly
improve intent prediction, achieving about 34% of mean average
precision (MAP) for both ASR and manual transcripts.

Index Terms— Spoken language understanding (SLU), spoken
dialog system (SDS), matrix factorization (MF), distributional se-
mantics, enrichment.

1. INTRODUCTION

Spoken dialogue systems (SDS) are recently appearing on smart-
phones and allow users to launch applications (apps) via spontaneous
speech. Typically, an SDS requires a predefined domain ontology
to understand corresponding functions, such as alert clock setting
(CLOCK) and navigation (MAPS) [1]. The key component of an
SDS is a spoken language understanding (SLU) module that maps
utterances into intents; for example, after hearing “drive me to
CMU”, the system may predict that the user requires navigation
and then automatically launches the corresponding app to provide
better interactions. To design the SLU module of an SDS, most of
previous studies relied on the predefined ontology to train the de-
coder [2, 3, 4, 5, 6, 7]. However, these predefined knowledge bases
may bias the subsequent user data collection process, and incur the
cost of manually labeling utterances and updating the ontologies.

In recent years, this issue leads to development of unsupervised
SLU techniques [8, 9, 10, 11, 12]. Chen et al. proposed a frame-
semantics based framework for automatically inducing semantic
slots given raw speech audio [10, 12, 13, 14]. A knowledge graph
resource was used to train models for intent detection in SLU, and
results obtained from an unsupervised training process aligned well
with the performance of traditional supervised learning [8]. Tur et
al. also showed that search engine logs and entity types from the
knowledge graph can be used to infer implicit semantics and help

improve slot-filling performance in a movie domain [15, 16]. Such
knowledge can be applied to domain expansion and supports open
domain requests in SDSs [1, 17, 18].

Another challenge of SLU is the inference of hidden seman-
tics. Given a user utterance “i would like to contact Alex”, its sur-
face patterns include explicit semantic information about “contact”;
however, it also includes hidden semantics such as “message” and
“email”, because the user likely intends to launch apps like MES-
SENGER (message) or OUTLOOK (email) even though they are not
directly observed in the surface patterns. The prior work only con-
sidered explicit information to retrieve apps that are able to support
the requests, where the unobserved concepts were not involved [1,
19, 20]. Such hidden semantics was shown to be useful for learning
better SLU models and can be captured by matrix factorization (MF)
techniques [21].

Therefore, instead of using discriminative classifiers to predict
whether predefined slots occur in the utterances, this paper utilizes a
similar idea to model implicit relations among various types of fea-
tures, including word patterns, acquired knowledge, and intentions,
in order to accurately infer user intents and provide better interac-
tions with users. Specifically, this paper proposes a feature-enriched
MF to learn low-ranked latent features for SLU, taking multimodal
features into account [22]. This model incorporates unobserved fea-
tures and estimates their probabilities instead of viewing them as
negative instances, where hidden semantics can be remained for SLU
to better predict intents [21, 22].

We evaluate the performance by examining whether predicted
apps can satisfy users’ requests. The experiments show that our MF-
based approach can model user intents and allow an SDS to provide
better responses for unsupervised single-turn requests. Our contri-
butions are three-fold:

• This is among the first attempts to apply feature-enriched MF
techniques for intent modeling, incorporating different sources
of modalities;

• The MF approach jointly models spoken observations and avail-
able textual information, and learns implicit semantics based on
feature relations;

• Our empirical results indicate that our feature-enriched MF ap-
proaches outperform most of strong baselines and achieve better
intent prediction performance.

2. USER INTENT MODELING

Under an app-oriented SDS, the main idea is to model user intents [1,
22]. Given a user’s spoken utterance, how can an SDS dynamically
support functions corresponding to requests beyond predefined do-
mains in an unsupervised manner [1]? Therefore, a such system is
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Fig. 1. The feature matrix incorporates app descriptions and utterance contents in a joint fashion. Feature enrichment extracts the domain
knowledge given the utterances (middle set of columns), and language modeling (LM) technique is applied to model explicit semantics (right
set of columns). Our MF method completes a partially-missing matrix to factorize the low-rank matrix for implicit information modeling.
Dark circles are observed facts, and shaded circles are latent and inferred facts. Reasoning with MF considers latent semantics to predict
intents based on rich features corresponding to the current user utterance.

able to provide more flexible communication after overcoming do-
main restrictions. The typical retrieval approach can be applied to
the problem and then generates a first-pass app ranking list. With the
pseudo positive results, a feature-enriched MF model is proposed to
estimate implicit intents based on app textual descriptions, observed
spoken utterances, automatically acquired knowledge, and user in-
tentions in a jointly fashion. The models focus on estimating the
probability of an app a being launched given a currently observed
utterance u, P (a | u), for intent prediction.

3. FEATURE-ENRICHED MATRIX FACTORIZATION

A matrix factorization (MF) technique has been explored in different
domains, which models latent semantics under a low-rank assump-
tion [23, 21]. Considering to 1) model noisy data, 2) model hidden
semantics, and 3) model long-range dependencies between obser-
vations, this work applies an MF approach to intent modeling for
SDSs. First we define 〈x, y〉 as a fact, which refers to an entry in
a matrix. The input of our model is a set of observed facts O, and
the observed facts for a given utterance is denoted by {〈x, y〉 ∈ O}.
The goal of our model is to estimate, for a given utterance x and an
app-related intent y, the probability, P (Mx,y = 1), where Mx,y is a
binary random variable that is true if and only if y is the app for sup-
porting the utterance x. We introduce a series of exponential family
models that estimate the probability using a natural parameter θx,y
and the logistic sigmoid function:

P (Mx,y = 1 | θx,y) = σ(θx,y) =
1

1 + exp (−θx,y)
. (1)

We construct a matrixM with observed facts, and then factorize it by
a matrix completion technique with the low-rank assumption, where
the representations of utterances and features can be parameterized.

3.1. Feature Model Construction

The constructed feature matrix is illustrated in Fig. 1, which is en-
riched with various modalitieis: word observations, enriched seman-
tics, and pseudo relevant apps for intent modeling.

Algorithm 1 Semantics Enrichment Procedure
Require: a word observation set W in the utterance; a vocabulary

V ; a word relatedness function fs(·)
Ensure: a set of enriched semantics S

1: Initializing S∗ = {};
2: for all w ∈W do
3: Extracting the words with similarity higher than a threshold

from the vocabulary, V ∗ = {v | fs(w, v) ≥ δ, v ∈ V };
4: Enrich the semantic set S∗ ← S∗ ∪ V ∗
5: end for
6: return S∗;

3.1.1. Word Observation Matrix

A word observation matrix features with binary values based on n-
gram word patterns. Two word observation matrices are built, where
FAw is for textual app descriptions and FUw is for spoken utterances.
Each row in the matrix represents an app/utterance and each column
refers to an observed word pattern. In other words, FAw and FUw carry
basic word vectors for all apps and all utterances respectively.

3.1.2. Enriched Semantics Matrix

In order to incorporate open domain knowledge based on the user’s
utterance, we utilize distributed word representations to capture syn-
tactic and semantic relationships for knowledge acquisition [1, 12].

• Embedding-based semantics: We enrich original utterances with
semantically similar words, where the similarity is measured by
word embeddings trained on app descriptions [24, 1]. Algo-
rithm 1 shows the procedure of acquiring domain knowledge for
semantics enrichment.

• Type-embedding-based semantics: In addition to semantically
similar words, types of concepts are included to further expand
the semantic information. For example, “play lady gaga’s bad
romance” may contain the types “singer” and “song” (domain-
related cues about music playing), so that we can improve se-
mantic inference by detecting all entity mention candidates in
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the given utterances and using entity linking with Freebase and
Wikipedia to mine entity types [1].

– Wikipedia page linking: For each entity mention from
the given utterance, we output a set of linked Wikipedia
pages, where an Integer Linear Programming (ILP) formu-
lation generates the mapping from mentions to Wikipedia
pages [25, 26]. For each entity, we extract its definition
sentence from the linked page, and then all words parsed
into adjectives or nouns in the noun phrase just follow-
ing the part-of-speech pattern (VBZ) (DT) such as “is
a/an/the” are extracted as semantic concepts. For exam-
ple, the sentence about the entity “lady gaga” is “Stefani
Joanne Angelina Germanotta, better known by her stage
name Lady Gaga, is an American singer and songwriter.”,
and the entity types, “American singer” and “songwriter”,
are extracted.

– Freebase list linking: Each mention can be linked to a
ranked list of Freebase nodes by Freebase API1, and we
extract top K notable types for each entity as the acquired
knowledge.

Then an enriched semantics matrix can be built as FUs , where
each row is a utterance and each column corresponds a semantic
element. The illustration is shown in Fig. 1.

3.1.3. Intent Matrix

To link word patterns to the corresponding intent, an intended
app matrix FAa is constructed, where each column corresponds to
launching a specific app. Hence, the entry equal to 1 indicates the
intent is associated with the app, and 0 otherwise,

To induce user intents, we use a retrieval model for returning
top K relevant apps for each utterance u, and treat them as pseudo
relevant app behaviors [1], which is detailed in Section 4. Fig. 1 in-
cludes an example of utterance “i would like to contact alex”, where
the utterance is treated as a request to search for relevant apps such
as “OUTLOOK” and “SKYPE”. Then we build an app matrix FUa
with binary values based on the top returned apps for denoting intent
features of utterances. Note that we do not use any annotations, the
app-related intents are returned by a retrieval model and may contain
some noises.

3.1.4. Integrated Model

As shown in Fig. 1, we integrate word matrices, an enriched se-
mantics matrix, and intent matrices from both apps and utterances
together for training the MF model. The integrated model can be
formulate as

M = [
FA
w 0 FA

a

FU
w FU

s FU
a

]. (2)

Hence, the relations among word patterns, domain knowledge, and
intents can be automatically learned from the integrated model. The
goal of the MF model is, for a given user utterance, to predict the
probability that the user intends to launch each app.

3.2. Optimization Procedure

With the built matrix, we can learn a model θ∗ that can best estimate
the observed patterns by parametrizing the matrix through weights

1https://developers.google.com/freebase/

and latent component vectors, where the parameters are estimated
by maximizing the log likelihood of observed data from M [27].

θ∗ = argmax
θ

∏
x∈U

P (θ |Mx) (3)

= argmax
θ

∏
x∈U

P (Mx | θ) · P (θ)

= argmax
θ

∑
x∈U

lnP (Mx | θ)− λθ,

where Mx is a row vector corresponding to the utterance x in M ,
because we assume that each utterance is independent of others.

To complete the missing entries of the matrix, our model can
be factorized by a matrix completion technique with a low-rank as-
sumption, which uses a variant of the ranking: giving observed true
facts higher scores than unobserved (true or false) facts to factorize
the given matrix [21, 28, 29, 30]. To estimate the parameters in (3),
we create a dataset of ranked pairs fromM : for each app/utterance x
and each observed fact f+ = 〈x, y+〉, we choose each intent y− re-
ferring to the app that does not correspond to x, or the app that is not
returned as by the retrieval model according to the utterance x. Then
for each pair of facts f+ and f−, we want our model to maximize the
margin between P (f+) and P (f−) i.e., the difference between θf+
and θf− according to (1). Our objective maximizes the summation
of each ranked pair:∑

x∈U

lnP (Mx | θ) =
∑
f+∈O

∑
f− 6∈O

lnσ(θf+ − θf−). (4)

The objective is an approximation to the per utterance AUC (area
under the ROC curve), which correlates with well-ranked apps per
utterance. For each randomly sampled observed fact 〈x, y+〉, we
sample an unobserved fact 〈x, y−〉, which results in |O| fact pairs
(f+, f−). For each pair, we perform an stochastic gradient de-
scent (SGD) update using the gradient of the corresponding objective
function for MF [31].

Finally we can obtain the estimated probabilities of various fea-
tures given the current utterance, which includes probabilities of in-
tended apps given an utterance, P (a | u). For our task, Fig. 1 shows
that the hidden semantics, “message”, “email”, and “communica-
tion”, are inferred from “i would like to contact alex” because se-
mantic relations between various features are captured by the model.

4. MOBILE APP PREDICTION

For each test utterance u, with the trained MF model, we can predict
the probability of each app a based on the observed features corre-
sponding to the current utterance by taking into account two models,
1) a baseline model for explicit semantics and 2) an MF-based model
for implicit semantics:

P (a | u) = Pexp(a | u)× Pimp(a | u), (5)
= Pexp(a | u)× P (Mu,a = 1 | θ),

where P (a | u) is an integrated probability for ranking apps,
Pexp(a | u) is the probability outputted by the baseline model that
considers explicit semantics, and Pimp(a | u) is the probability
estimated by the proposed feature-enriched MF model. The fused
probabilities are able to consider hidden intents by learning latent
semantics from enriched features.
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Table 1. User intent prediction on mean average precision (MAP) and precision at 10 (P@10) (%). LM is a baseline language modeling
approach which models explicit semantics. The relative improvement is shown in parentheses.

Feature
ASR Transcripts Manual Transcripts

MAP P@10 MAP P@10
LM w/ MF LM w/ MF LM w/ MF LM w/ MF

(a) Baseline: Word Observation 25.1 29.2 (+16.2%) 28.6 29.5 (+3.4%) 26.1 30.4 (+16.4%) 29.2 30.1 (+2.8%)
(b) (a) + Embedding-Enrichment 32.0 34.2 (+6.8%) 31.2 32.5 (+4.3%) 33.3 33.3 (-0.2%) 32.0 33.0 (+3.4%)
(c) (a) + Type-Embedding-Enrichment 31.5 32.2 (+2.1%) 31.3 30.6 (-2.3%) 32.9 34.0 (+3.4%) 32.5 34.7 (+6.8%)

For an unsupervised task of ranking apps based on user spoken
requests, a language modeling retrieval technique is used for query
likelihood estimation [32, 1], and app-related intents are ranked by

Pexp(a | u) =
P (u | a)P (a)

P (u)
(6)

∝ P (u | a) = 1

|u|
∑
w∈u

logP (w | a),

where u is the user’s query, a is an intended app, w represents the
token in the utterance, and P (u | a) represents the probability that
user speaks the utterance u to make the request for launching the app
a2. For example, in order to use the app GMAIL, a user is more likely
to say “compose an email to alex”, while the same utterance should
correspond to a lower probability when launching the app MAPS. To
estimate the likelihood by the language modeling approach, we use
the description content of an app with an assumption that it carries
semantically related information.

5. EXPERIMENTS

5.1. Corpus and Setup

With a view of expanding a set of domains for SDS interfaces, we
identified the most popular apps available from a mobile app store,
representative of important domains that users tend to access fre-
quently; the defined domains were used to design our experiments.
A total of 13 domains are defined, including “navigation”, “email
writing”, “music playing”, etc [1]. Then each subject was shown
with images corresponding to domain-specific tasks and asked to
voice 3 different ways for making requests in order to fulfilling the
task implied by the images. The corpus contains 195 utterances, and
the word error rate is reported as 19.8% using Google Speech API.
The average word count of an utterance is 6.8 for ASR outputs and
7.2 for manual transcripts, which suggests the challenge of retrieving
relevant apps given limited information in an utterance.

The data to populate the database was collected from Google
Play in November 2012. Total 140,854 apps were available; only
apps with more than one million downloads were considered. For
evaluation, judges manually identified apps from Google Play that
could support the corresponding tasks. We used the judge-labeled
apps as ground truth for evaluating predicted apps and reported stan-
dard information retrieval metrics, mean average precision (MAP)
and precision at 10 (P@10).

5.2. Evaluation Results

Table 1 presents the results using different features before and after
integrating with the MF model for ASR and manual transcripts. For

2Here we assume that the priors for apps/utterances, P (a), are the same.

ASR results, row (a) only takes word patterns as observations, and
first-pass LM performs 25% on MAP and 28% on P@10. It can
be found that combining with the standard MF model significantly
improves the performance.

For the baseline LM technique, semantics enrichment acquires
various domain knowledge and improves the performance (rows (b)
and (c)), but this can be further improved by integrating with the
feature-enriched MF model, achieving 34.2% on MAP and 32.5%
on P@10 for ASR transcripts. However, the type-embedding-
enrichment approach (row (c)) appears to introduce noises due to
imperfect types that are automatically acquired, the performance
does not show consistent improvement before and after combining
with MF.

For manually transcribed speech, MF models improve the per-
formance of original word patterns (row (a)). Different from ASR
results, feature-enriched MF models are able to predict user intents
better for both embedding-enriched and type-embedding-enriched
approaches, especially for P@10. The reason may be that manual
transcripts are more likely to capture the correct semantic informa-
tion by word embeddings and have more consistent type informa-
tion, allowing MF to model user intents more accurately.

In sum, the experiments show that almost all results are im-
proved after combining with MF-based models, indicating that hid-
den intents modeled by MF techniques help better estimate intent
probabilities. Also, the results show that the rich features acquired
by a semantics enrichment procedure can improve intent predic-
tion for most cases, showing the effectiveness of proposed feature-
enriched MF models. Comparing between best results on MAP for
ASR and manual transcripts (34.2% and 34.0% respectively), it can
be seen that MF can model not only hidden semantics but noisy data,
and achieve good performance even on noisy ASR results.

6. CONCLUSION

This paper proposes a matrix factorization approach to learn user in-
tents based on rich feature patterns from multiple modalities, which
takes into account app descriptions, automatically acquired knowl-
edge and user utterances. In a smart-phone intelligent assistant set-
ting (e.g. requesting an app), the proposed model considers implicit
semantics to enhance intent inference given noisy ASR inputs. We
believe that this approach will lead to systems that are able to han-
dle users’ open domain intents by retrieving relevant apps that pro-
vide desired functionality either locally available or by suggesting
installation of suitable apps and doing so in an unsupervised way. In
sum, the effectiveness of the proposed feature-enriched model can
be shown in different domains, indicating good generality and pro-
viding a reasonable direction for future work.
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