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ABSTRACT

We investigate two deep learning architectures reported to have
superior performance in ASR over the conventional GMM system,
with respect to automatic speech scoring. We use an approximately
800-hour large-vocabulary non-native spontaneous English corpus
to build three ASR systems. One system is in GMM, and two are in
deep learning architectures - namely, DNN and Tandem with bottle-
neck features. The evaluation results show that the both deep learn-
ing systems significantly outperform the GMM ASR. These ASR
systems are used as the front-end in building an automated speech
scoring system. To examine the effectiveness of the deep learning
ASR systems for automated scoring, another non-native spontaneous
speech corpus is used to train and evaluate the scoring models. Using
deep learning architectures, ASR accuracies drop significantly on the
scoring corpus, whereas the performance of the scoring systems get
closer to human raters, and consistently better than the GMM one.
Compared to the DNN ASR, the Tandem performs slightly better on
the scoring speech while it is a little less accurate on the ASR evalu-
ation dataset. Furthermore, given the results of the improved scoring
performance while using fewer scoring features, the Tandem system
shows more robustness for scoring task than the DNN one.

Index Terms— automatic speech scoring, non-native sponta-
neous speech, automatic speech recognition, deep neural network,
bottleneck features

1. INTRODUCTION

For the past two decades, a large number of studies have been con-
ducted using automatic speech recognition (ASR) technology in the
assessment of speech, such as computer aided pronunciation train-
ing (CAPT) and automated speech scoring (see [1] for a compre-
hensive review). In automated speech assessment systems, such as
those exemplified in [2, 3], different speech features are computed
using various methods including signal processing, prosodic analy-
sis, and natural language processing (NLP). The extracted features
are fed into a statistical model to automatically predict human speak-
ing proficiency levels.

As systematically investigated in [4], an ASR module used in-
side an automated speech scoring system plays a very important role
in achieving high scoring accuracy. As shown in Section 2, there
are emerging efforts in applying the new generation of deep neural
network (DNN) based ASR systems to speech assessment tasks. In
this paper, we will report our work on (a) using a very large non-
native English corpus to train deep learning based ASR systems, (b)
comparing the ASR performance of these systems to a conventional
Gaussian mixture model (GMM) based one, (c) applying the ASR

systems to the automated speech scoring task, and finally (d) com-
paring the scoring performance. To our knowledge, this is the first
ASR study to use approximately 800 hours of non-native sponta-
neous speech covering over 100 first languages (L1s) across 8700
speakers from about 150 countries around the world; and no work
so far has investigated a comparison between deep learning architec-
tures for automated speech scoring.

The paper is organized as follows: Section 2 briefly reviews pre-
vious studies on deep learning based ASR and its increasing use in
the task of automated speech scoring; Section 3 describes the three
types of ASR systems, i.e., GMM, DNN, and Tandem using acous-
tic features learned from a bottleneck (BN) network; Section 4 de-
scribes our speech scoring model setup, including the features and
the machine learning prediction models; Section 5 reports our exper-
iments; and finally Section 6 makes conclusions.

2. PREVIOUS RESEARCH

From ASR outputs and prosodic analyses, a set of features suggested
widely in English Language Learner (ELL) studies can be automati-
cally computed, such as features measuring speaking fluency, intona-
tion, vocabulary, and so on. One example of a task in speech assess-
ment focuses on measuring pronunciation performance, in which
Goodness of Pronunciation (GOP) [5] is a predominant approach to
calculate the pronunciation features based on posterior probabilities
from an acoustic model (AM) in ASR. A working example of a rich
set of speech features can be found in [2].

Non-native speech presents challenges for automatic recognition
over and above those presented by native speech. Non-native speech
contains more diverse allophones, a broader range of accent, a higher
possibility of hesitations, filler words, partial words, or even words
randomly invented by speakers, etc. From the ASR standpoint, in or-
der to build an accurate AM for non-native speech, a very large size
training corpus with hundreds of hours of speech files is typically re-
quired. However, due to the lack of such large size training corpora,
most previous research has focused on using various model adap-
tation approaches to adapt existing models trained on native speech
data towards a non-native ASR system [6].

For decades, GMMs have been regarded as the most powerful
model for building AMs for ASR systems. Very recently, artifi-
cial neural networks with multiple layers have replaced GMMs for
building AMs. [7] provides a systematic overview of this funda-
mental change in the ASR research field. With DNN’s widespread
successes in ASR, it has also been recently applied to the task of
speech assessment. In [8], deep belief network (DBN) was applied
to ASR for improving the performance of a CAPT system. [9, 10]
first applied DNN in evaluating English learners’ pronunciation in
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a Computer-Aided Language Learning (CALL) scenario. Multi-
layer, stacked Restricted Boltzman Machines (RBMs) were trained
as AMs for computing three GOP-style pronunciation features. It
was found that DNN AMs improved pronunciation evaluation per-
formance over their GMM counterparts. [11, 12] investigated the
use of context-dependent DNN hidden Markov models (CD-DNN-
HMM), to improve ASR and obtained more accurate automatic as-
sessment of child English learners. Their DNN-HMM ASR out-
performed the GMM-HMM one significantly. Using content and
manner-of-speaking features derived from DNN-ASR outputs, ma-
chine scoring was improved to the level of human raters. [13] re-
ported training a Tandem GMM-HMM ASR using bottleneck fea-
tures on 100-hours of non-native English data from the AMI meet-
ing. They obtained a 37.6% word error rate on the BULATS (Busi-
ness Language Testing Service) corpus of learners’ speech made
available by Cambridge English.

In previous efforts in applying DNN-HMM ASR systems to
speech assessment tasks, researchers mostly focused on one single
type of network architecture, namely, DBN. However, very recently,
more network architectures have been proposed, and some have
already shown promising improvements in speech recognition accu-
racy [14, 15]. It is worthwhile to evaluate the potential benefits of
these different types of neural networks for the speech scoring task.

3. ASR SYSTEMS

In our study, three types of ASR systems with different AMs are built
using Kaldi [19], a state-of-the-art open-source ASR toolkit. While
the AMs for these ASR systems are different, they all share the same
tri-gram language model (LM) for this study. The details of these
systems are described below. Note that all of these ASR systems are
gender-independent.

GMM system: In the conventional GMM-HMM ASR, 3-state
left-to-right context-dependent HMMs with 8 Gaussian mixtures per
state are used to model 39 phones and the variants in US-English,
plus 1 silence phone, and 2 noise phones. Frames of 13-dimensional
Mel-frequency cepstral coefficients (MFCCs) along with their ∆
and ∆∆ coefficients are extracted as acoustic features using a 25ms
frame-size with a 10ms shift for 16kHz 16-bit mono wav files. The
mean and variance normalized MFCC features are spliced in time
taking a context size of 9 frames (4 on each side of the current
frame), and are further de-correlated and reduced dimensionality to
40 by applying linear discriminant analysis (LDA) [20]. The classes
for the LDA estimation are the triphone states. The resulting features
are further de-correlated using maximum likelihood linear transform
(MLLT) [21]. The speaker normalization is followed by applying
feature-space maximum likelihood linear regression (fMLLR) [22].
The final GMM system in our baseline has 40× 41 fMLLR param-
eters with the speaker adaptive training (SAT) [23] on top of it.

DNN system: In this system, a 5-layer DNN with p-norm (p=2)
nonlinearity is trained using layer-wise supervised backpropagation
training [24]. A normalization component right after each hidden
layer is applied to keep the training stable and prevent the neurons
from becoming over-saturated. The same acoustic features as in the
final baseline GMM system were used with the same +/- 4 context
size of frames. The network training randomly initializes with one
hidden layer, trains it shortly, then removes the layer of weights that
go to the softmax layer, adds a new hidden layer and two sets of ran-
domly initialized weights, and trains again. The process is iterated
until the desired number of layers are produced. Senone state-level
posterior probabilities from the output of the DNN are further con-
verted into likelihoods by dividing by the prior of the states, and are
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Fig. 1. Two layers stacked bottleneck network [25].

fed to the HMM framework as a replacement for the GMM likeli-
hoods.

Tandem system: Another class of hybrid ASR systems are Tan-
dem, in which a neural network is used to extract features for GMM-
HMM models. The main advantage of using Tandem features is that
one can re-use the existing ASR engines by simply replacing the
acoustic feature extractor with the Tandem one. As established in
the literature [26, 25, 27], Tandem features can be extracted from
the output of the neural network or the bottleneck (BN) layer. Bot-
tleneck features (BNF) do not require de-correlation and dimension
reduction and gain further improvement compared to traditional Tan-
dem features [26]. Figure 1 shows a BN network used in this study
which is a stack of two BN systems [25]. The second BN layer in
this architecture can make a better decision based on a longer tempo-
ral context. In our case, each BN network is a 5 layer neural network
with the BN size of 30 neurons, and hidden layer size of 1024 neu-
rons. The first BN is trained on 11 frames of mean and variance nor-
malized MFCC static, delta and acceleration coefficients. The output
of this network from the BN layer is mean and variance normalized
and concatenated with time offsets of −10, −5, 0, 5, 10 to prepare
the input for the second BN network. The output of the second BN
network is used as the final feature for GMM-HMM models. In the
network structures for BN training, sigmoid is used as the activation
function. The cross-entropy criterion has been employed for network
training. To achieve the best performance, sequence-discriminative
training using maximum mutual information (MMI) is applied on
top of the cross-entropy method [28].

4. SCORING SYSTEM

SpeechRaterSM , an automated scoring engine for assessing non-
native English proficiency [2], is used to extract scoring features and
predict a numerical score for spoken responses. The features are
related to several aspects of the speaking construct1, which include
fluency, rhythm, intonation & stress, pronunciation, grammar, and
vocabulary use. A group of these features measuring generic speak-
ing skills was extracted for scoring spontaneous non-native speech.
Table 1 provides a concise synopsis of these features.

Based on the available speech features reported in Table 1, au-
tomatic scoring feature selection based on LASSO regression [29] is
used to obtain a much smaller input feature set (# features are about
33) for building a linear regression model for score prediction. The
number of LASSO regression selected features are 26, 33, and 28
for the three different scoring models with GMM, DNN, and Tan-
dem as the front-end respectively. Note that linear regression (LR) is

1In psychometric terms, a construct is a set of knowledge, skills, and
abilities that are required in a given domain.
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Category Quantity Example Features
Fluency 18 Features based on the number of words per second, number of words per chunk, num-

ber of silences, average duration of silences, frequency of long pauses (≥ 0.5 sec.),
number of filled pauses (uh and um) [2]. Frequency of between-clause silences and edit
disfluencies compared to within-clause silences and edit disfluencies [16].

Rhythm, Intonation & Stress 12 Features based on the distribution of prosodic events (promincences and boundary
tones) in an utterance as detected by a statistical classifier (overall percentages of
prosodic events, mean distance between events, mean deviation of distance between
events) [2] as well as features based on the distribution of vowel, consonant, and sylla-
ble durations (overall percentages, standard deviation, and Pairwise Variability Index)
[17].

Pronunciation 9 Acoustic model likelihood scores, generated during forced alignment with a native
speaker acoustic model, the average word-level confidence score of ASR and the av-
erage difference between the vowel durations in the utterance and vowel-specific means
based on a corpus of native speech [18]

Grammar 13 Similarity scores of the grammar of the response in ASR with respect to reference re-
sponse.

Vocabulary Use 13 Features about how diverse and sophisticated the vocabulary based on the ASR output.

Table 1. Descriptions of SpeechRaterSM features for automated scoring

used (instead of other more powerful machine learning algorithms)
to obtain a more interpretable model.

5. EXPERIMENTAL RESULTS

5.1. Non-native Spontaneous English Corpora

We use TOEFL Internet-based test R© (iBT) data in our ASR exper-
iments and TOEFL Practice Online R© (TPO) data in our automated
scoring experiments. TOEFL iBT is a well known English test in the
TOEFL family, measuring test takers’ readiness for attending univer-
sities using English as their primary instructional language. TPO is
a practice test provided by TOEFL for test-takers to prepare for the
iBT exams. Although both corpora are in the same TOEFL

R©
family,

the test administration years and contexts are different. In addition,
due to the fact that TPO is not a formal test, English learners may be
less motivated for an online practice test. Moreover, they use their
own audio input devices and may experience different background
noise. Therefore, the TPO corpus used for scoring purposes can be
treated as the out-of-domain data to the iBT corpus for ASR training
usage.

Table 2 provides more details about these data sets. Regarding
the ASR experiments using the iBT corpus, we use a typical data-
splitting setup, i.e., asr-train, asr-dev, and asr-eval partitions with
manual orthographic transcriptions for ASR training, development
and evaluation. Note that there is no speaker overlap among the
three sets. The ASR training partition contains a total of 819 hours of
non-native spontaneous speech covering more than 100 L1s across

Corpus Partition #Items #Speakers Dur (hrs)
asr-train 52200 8700 819

TOEFL iBT asr-dev 600 100 9.4
asr-eval 600 100 9.4

TPO sm-train 4002 667 57.6
sm-eval 1998 333 29

Table 2. Non-native spontaneous English corpora. #Items: number
of responses per set; #Speakers: Number of speakers per set; Dur
(hrs): Duration of each set in hours.

8700 speakers from about 150 countries around the world. In the
automated scoring experiments, 1000 TPO test takers were chosen
to create the scoring corpus (each speaker responded to 6 test items
to produce 6 spoken responses) , and two thirds of the 6000 total re-
sponses were allocated to the scoring model training (sm-train) par-
tition, and one third was allocated to the scoring model evaluation
(sm-eval). All responses used for scoring were double scored by
experienced human raters following the 4-point scale scoring rubric
designed for scoring the TOEFL test. The scoring reliability is mea-
sured by the inter-rater agreement calculated in terms of both the
Pearson correlation coefficient (r) and quadratic weighted kappa (κ).
The response item level and the speaker level inter-rater agreement
are ritem = κitem = 0.59, and rspkr = κspkr = 0.88 respectively.

5.2. ASR performance

Table 3 shows the results of different ASR systems for the non-
native spontaneous speech recognition tasks, namely the word error
rate (WER) for asr-eval (WERae), sm-train (WERst), and sm-eval
(WERse) partitions, respectively. A shared LM by the three ASR
systems are trained on the asr-train partition. The ASR performance
on the asr-eval data using the best conventional GMM system, which
is fMLLR with SAT, has a WER of 29.43%. Using DNN instead of
GMM in the HMM frame-work achieves a 22.76% WER, which is
about 23% relative WER reduction over the GMM system. The Tan-
dem system achieves a 23.07% WER, which is about 22% in relative
WER reduction over GMM. The significant WER reduction on both
deep learning based ASR systems shows that a high performance
gain in non-native spontaneous ASR is achievable. The ASR per-
formance on the two scoring model partitions in Table 3 show that
all three ASR systems have absolute WER increments in the close
range of 12-13%. One possible reason for the substantial ASR per-

System WERae WERst WERse

GMM 29.43 43.35 42.45
DNN 22.76 35.41 35.11

Tandem 23.07 35.17 35.07

Table 3. WER for 3 data partitions using 3 different ASR systems.

6142



System ritem κitem rspk κspk

GMM 0.52 0.48 0.74 0.73
DNN 0.55 0.52 0.76 0.74

Tandem 0.58 0.53 0.78 0.78

Table 4. Pearson correlation (r) and quadratic weighted kappa
(κ) between SpeechRaterSM and human raters’ scores in item and
speaker level across 3 ASR systems.

formance drop is the acoustic condition and quality of the TPO data,
and another is that the spoken responses are out-of-domain. The
calculated LM perplexities are 69.6, 132.0, and 130.1 for the asr-
eval, sm-train, and sm-eval partitions respectively. The perplexity
results indicate 1) that the TPO scoring corpus in context is out-of-
domain to the iBT ASR training corpus; 2) a ballpark lower bound
for deep learning based ASR systems in operational use without the
pre-knowledge of data.

5.3. Scoring performance

Table 4 reports our machine scoring experiment using the three
trained ASR systems. In order to simulate in a real world scenario
without any pre-knowledge of whether the spoken responses in the
scoring data are from the same domain as the ASR training set, all
three ASR systems are built using the ASR training partition only,
without additional tuning or optimization towards the scoring data.
Both deep learning based scoring systems perform considerably bet-
ter than GMM, which is reflected by both the item and speaker level
correlations’ increment. In automated speech scoring, quadratic
weighted kappa (κ) normally has a lower value than Pearson corre-
lations (r). The difference between the two correlations can indicate
how efficiently and robustly the scoring system can predict consis-
tent scores in the both float point and integer. Between two deep
learning based scoring systems, the Tandem system shows more
robustness and efficiency with the highest correlations to human
rater in all cases, while the ASR performance is similar to DNN.
The results indicate that deep learning approaches in the acoustic
feature domain have a bigger impact on automated scoring systems
than those in the model domain.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we explored two deep learning architectures to improve
an automated scoring system for non-native spontaneous speech us-
ing a very large corpus for ASR training. Both deep learning based
ASR systems substantially reduce WER compared to the best con-
ventional GMM system. In a similar manner, using the deep learning
ASR systems as the front-end of an automated scoring system shows
a considerable gain over the GMM based scoring system. Compared
to the ASR performance on the in-domain data, the recognition ac-
curacy of each system drops significantly on the out-of-domain data.
Between the two deep learning based ASR systems, the Tandem per-
forms slightly better on the out-of-domain speech while it is a little
less accurate on the in-domain data. Furthermore, the Tandem sys-
tem shows more robustness in scoring, given the experimental results
of the consistently improved scoring performance while using fewer
of the selected scoring features.

The conclusions in this paper were drawn using one non-native
spontaneous speech corpus for building ASR systems, and another
corpus for the scoring purpose. That the scoring corpus was out-of-
domain to the ASR training data caused the ASR performance drop.
It will be worthwhile to examine both the ASR and scoring perfor-

mance on the in-domain corpus in order to better understand how the
impact of deep learning based speech assessment differs between the
in-domain and out-of-domain data. In the case of a lack of a human
transcribed scoring corpus, a possible ASR performance improve-
ment on out-of-domain data can be archived using LM adaptation
approaches. The two deep learning ASR systems were trained by
following the original publications from two different groups of au-
thors; the two systems differed in complexities such as the number of
context frames and the number of network layers, etc. Future work
will compare the complexities of the different deep learning archi-
tectures. Our scoring results showed a general direction of the deep
learning approaches in the field of speech assessment; future studies
will focus on the scoring features used in the different scoring mod-
els across different test takers’ scores and L1s in order to enhance
the interpretation of deep learning methods in speech scoring.
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[28] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in Proc. of
INTERSPEECH, 2013, pp. 2345–2349.

[29] A. Loukina, K. Zechner, L. Chen, and M. Heilman, “Feature
selection for automated speech scoring,” in Proceedings of the
Tenth Workshop on Innovative Use of NLP for Building Edu-
cational Applications, 2015, pp. 12–19.

6144


