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ABSTRACT 

 
We propose the use of speech attributes, such as voicing and 

aspiration, to address two key research issues in computer assisted 

pronunciation training (CAPT) for L2 learners, namely detecting 

mispronunciation and providing diagnostic feedback. To improve 

the performance we focus on mispronunciations occurred at the 

segmental and sub-segmental levels. In this study, speech attributes 

scores are first used to measure the pronunciation quality at a sub-

segmental level, such as manner and place of articulation. These 

speech attribute scores are integrated by neural network classifiers 

to generate segmental pronunciation scores. Compared with the 

conventional phone-based GOP (Goodness of Pronunciation) 

system we implement with our dataset, the proposed framework 

reduces the equal error rate by 8.78% relative. Moreover, it attains 

comparable results to phone-based classifier approach to 

mispronunciation detection while providing comprehensive 

feedback, including segmental and sub-segmental diagnostic 

information, to help L2 learners. 

 
Index Terms — mispronunciation detection and diagnosis, 

automatic speech recognition (ASR), deep neural network (DNN), 

computer assisted pronunciation training (CAPT), automatic 

speech attribute transcription (ASAT) 

 

1. INTRODUCTION 

 
With accelerating globalization, more and more people are willing 

or required to learn a second language (L2), in addition to their 

mother tongue language (L1) [1, 2]. The shortage of qualified L2 

language teachers has thus become a serious problem, and 

computer assisted language learning (CALL) systems can play a 

key role in alleviating the lack of qualified teachers. An essential 

component of CALL is computer assisted pronunciation training 

(CAPT) used to automatically detect learners’ mispronunciations 

and ideally provide diagnostic feedbacks. Mispronunciations refer 

to pronunciation errors, where surface pronunciation forms differ 

from correct canonical pronunciation forms. These errors can be 

defined on various time-scales, namely supra-segmental (e.g., 

lexical stress, intonation, lexical tones etc.), segmental (e.g., 

substitution of phonetic units), and sub-segmental (e.g., voicing 

feature activated for a canonical unvoiced phone [3, 4]). 

Over the past decade, automatic speech recognition (ASR) 

systems have been employed to assess the goodness of 

pronunciation at the segmental level. For example, Log-Likelihood 

Ratio (LLR) between native-like and non-native models was 

employed in [5] to detect mispronunciation errors. Witt & Young 

[6] introduced “Goodness of Pronunciation” (GOP)”, which is a 

generalized log likelihood ratio score, known to be used in 

utterance verification [7-11], taking into account the likelihood of 

both the intended canonical phone and a pool of competing phones. 

Subsequently, several variants of the GOP score were proposed 

[12, 13, 14]. Although good mispronunciation detection results can 

be attained using the above-mentioned systems, the feedback at the 

segmental level might not be intuitive or instructive enough for the 

L2 learner to correct his mispronunciation. 

Another CAPT framework, called extended recognition 

network (ERN), had also been proposed [15, 16, 17]. The phone 

recognition network is first expanded by adding common phonetic 

error patterns. Then this ERN is used to force align learners’ 

utterances. By contrasting the canonical form with the forced-

aligned spoken utterances, the ERN method can provide some 

diagnostic information related to phone substitution, i.e., phone /A/ 

has been substituted with phone /B/. Nonetheless, a major 

assumption made by providing a feedback at a segment (a.k.a. 

phone) level is that learners are aware of which articulatory 

movements (e.g., manner and place of articulation [3, 4]) have to 

be corrected in order to restore the canonical phone pronunciation. 

Unfortunately, that is a challenging task for L2 beginners. For 

example, some phones in L2 are absent in L1: beginner Japanese 

learners of English might pronounce “lice” instead of “rice”. 

Facing the segmental level feedback “phone r is mispronounced as 

phone l”, learners might fail to adjust their articulatory movements 

to correct this error, because the phone /r/ does not exist in 

Japanese. Moreover, even if the supposed target phone exists in the 

learner’s L1, the acoustic realizations of it might differ from the 

target language. For example, in Indian English and Singapore 

English, dental fricatives might be pronounced with stop-like 

acoustic features, making the word “three” sound like “tree” [18]. 

Exploiting information at a sub-segmental level enhances the 

feedback quality and alleviates some of the problems mentioned 

above. Facing the same mispronunciation described above, the 

Japanese learners could be instructed to improve their 

pronunciation if they were given sub-segmental feedback “make a 

sound similar to /l/ but roll your tongue more backwards to create 

the acoustic characteristics of /r/”. Indeed, it has been reported that 

L2 learners prefer to receive direct instruction on how to correct 

mispronunciation at a sub-segmental level [19]. Moreover, 

mispronunciation detection at a sub-segmental level can more 

accurately specify systematic L2 pronunciation errors [20]. 

Attracted by such potential benefits, researchers have exploited 

sub-segmental information for L2 learning [19, 21, 22], where an 

acoustic-to-articulatory inversion method is adopted to directly 
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provide feedback at an articulatory level. In [20, 23, 24], rule-

based acoustic-articulatory mapping tables were employed to 

overcome the difficulty of collecting articulatory measurements to 

map each phone to its corresponding articulators. However, past 

work in mispronunciation detection performance at the sub-

segmental level have been suboptimal due to the use of shallow 

models, or the lack of large training corpora [20]. 
Recently, iCALL, a large non-native speech corpus, has been 

designed, collected, and annotated at the Institute for Infocomm 

Research (I2R) [25]. A large training corpus can facilitate the full 

usage of deep neural networks (DNNs) for better sub-segmental 

estimation and detection [26, 27, 28]. In this work, speech 

attributes, such as voicing, aspiration, and manner and place of 

articulation, are extracted with DNNs. We use the terms speech 

attributes, sub-segmental, and acoustic-phonetic interchangeably in 

this work. The frame-based DNN posteriors are used as scores to 

measure pronunciation quality, e.g., correctness of manner and 

place of articulation. Moreover, the sub-segmental scores are then 

merged by neural networks to generate segmental scores. 

 

2. MANDARIN PHONES & SPEECH ATTRIBUTES 

 
In Mandarin, each Chinese character corresponds to one spoken  

syllable, consisting of an initial, usually a consonant, and a final, 

usually a vowel(s) or vowel(s) followed by a nasal. Speech 

attributes can be used to describe how consonant, vowel and nasal 

are produced using related articulators. Therefore, we can use such 

information to help detect initial and final mispronunciations. 

Table 1 lists the speech attribute categorization of Mandarin 

phones denoted in Pinyin. We adopt the same attribute-to-phone 

conversion rules as in [29]1. 

 

3. OVERVIEW OF DETECTION FRAMEWORK 
 

In this work, we adopt the automatic speech attribute transcription 

(ASAT) paradigm [27] to build the mispronunciation detection 

framework shown in Figure 1. 

 

3.1. Attribute Feature Extraction 

 
The feature extraction module consists of a bank of speech 

attribute classifiers. A context dependent DNN-based attribute 

classifier is separately built for each category described in Table 1. 

Expanded frames of input speech are fed into each detector, 

generating the current frame posteriors pertaining to each possible 

attribute within that category. Subsequently, a group of the frame 

attribute posteriors will be fed into the next module. 

 

 3.2. Sub-segmental Pronunciation Score Calculation 

 
In this module, we adopt the goodness of pronunciation (GOP) 

calculation from [14]. Given unit p (e.g., context-independent 

attribute), we use Eq. (1) to calculate its log posteriors: 

            log 𝑃(𝑝|𝒐; 𝑡𝑠, 𝑡𝑒) =
1

𝑡𝑒 − 𝑡𝑠
∑ log ∑ 𝑃(𝑠|𝒐𝒕

𝑠𝜖𝑝

𝑡𝑒

𝑡=𝑡𝑠

),          (1) 

where 𝒐𝒕 is the input feature at frame t; 𝑡𝑠 and 𝑡𝑒 are the start and 

end times of unit 𝑝, obtained by forced-alignment. 𝑃(𝑠|𝒐𝒕) is the 

frame-level posterior; 𝑠  is the context-dependent label (e.g., 

context-dependent manner attributes); {𝑠 ∈ 𝑝} is the set of context-

dependent units, whose central unit is 𝑝. Consequently, the GOP 

score for unit p is evaluated as 

                    𝐺𝑂𝑃(𝑝) = log
𝑃(𝑝|𝒐; 𝑡𝑠, 𝑡𝑒)

max{𝑞∈𝑄}𝑃(𝑞|𝒐; 𝑡𝑠, 𝑡𝑒)
,                        (2) 

where p is the canonical unit, q is the competing unit, and Q is the 

set of possible units within each category. A threshold is needed to 

                                                 
1 The phoneme /I/ has 3 allophones: [I1] when followed by C, Z, S, [I2] 

when followed by ZH, CH, SH, R, and [I] when followed by all other 
initials. 
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 Figure 1: Overview of mispronunciation detection framework, adapted from [27]. 

 
Figure 1: Overview of mispronunciation detection framework, adapted from [27]. 

 

Table 1. Speech attributes and their associated phones in Pinyin 

Category Attribute Phone set 

Place 

Bilabial B,P,M 

Labiodental F 

Alveolar D,L,N,T 

Dental C,S,Z,I1 

Retroflex ZH,CH,SH,R,ER,I2 

Palatal J,Q,X,A,O,E,I,U,V 

Velar G,H,K,NG 

Manner 

Stop B,P,D,T,G,K 

Fricative F,S,SH,R,X,H 

Affricative Z,ZH,C,CH,J,Q 

Nasal M,N,NG 

Lateral L 

N/A A,O,E,I,I1,I2,U,V,ER 

Aspiration 

Aspirated P,T,K,C,CH,Q 

Unaspirated B,D,G,Z,ZH,J 

N/A 
F,H,L,M,N,R,S,SH,X,NG,  

A,O,E,I,I1,I2,U,V, ER 

Voicing 

Voiced 
M,N,L,R,NG,  

A,O,E,I,I1,I2,U,V, ER 

Unvoiced 
B,P,M,F,D,T,N,L,G,K,H,J,Q,X  

ZH,CH,SH,R,Z,C,S 

Silence Silence SIL 
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verify whether the current unit is correctly pronounced. When 

computing unit is set to attribute, the log posterior of any given 

attribute can be calculated by using equation (1). We call these 

logarithmic posterior scores as sub-segmental scores. 

 

3.3. Segmental Pronunciation Score Calculation 

 
After being appended and expanded, sub-segmental scores are used 

to discriminate phone classes. The merger can be implemented 

with neural networks. The log-ratio between posterior of canonical 

phone p and that of the most competing phone q is adopted as the 

segmental score. To provide segmental level feedbacks (e.g. phone 

substitution), given one speech segment, the detection result in this 

study is phone p or q (depending on if the above ratio is larger or 

smaller than the threshold). In the next experiment section, we 

enumerate a variety of possible thresholds to calculate the 

detection accuracy and display the precision-recall curves. As our 

preliminary study, this paper focuses on the mispronunciation of 

initials, because initial errors are more prone to cause 

miscommunication in Mandarin when compared to finals [30]. 

 

4. EXPERIMENTS 

 

4.1. Speech Corpora 

 
The native speech corpus is from the Chinese National Hi-Tech 

Project 863 for Mandarin LVCSR system development [31]. A 

total of 94,000 utterances spoken by 160 speakers (100 hours) were 

used for acoustic modeling.  

The non-native speech corpus used is a subset of iCALL [25], 

containing 90,841 utterances spoken by 305 beginning learners of 

Mandarin. Each learner was asked to read Pinyin prompts, ranging 

from short phrases to sentences. All audio recordings are manually 

transcribed (surface pronunciation) by trained labelers, while the 

original Pinyin prompts were used as canonical pronunciation. By 

comparing the above surface and canonical transcriptions, we can 

get mispronunciation types at the phone level. Based on Table 1, 

after mapping each phone to its corresponding attributes, we can 

also identify mispronunciation types at the sub-segmental level.  

The iCALL corpus is divided into 2 subsets: (i) training set 

(270 speakers), which was incorporated with the native training 

data to obtain the acoustic models; the training set only included 

short utterances, which had fewer mispronunciations compared to 

the long sentences [25]; and (ii) test set (30 speakers), which was 

used for evaluation. There is no speaker overlap between the 

training and test sets. Moreover, our L2 test set is made up of 5 

different L1s, including English, French, Spanish, Italian and 

Russian. Such L1 diversity makes mispronunciation detection 

more challenging, because the error types made by different L2 

learners are influenced by their L1s [7]. 

 

4.2. Phone-based Systems Setup 
 

To better appreciate the empirical evidence gathered in the next 

sections and establish a sound assessment of the proposed 

framework, we implemented two phone-based systems, phone-

based GOP system and phone-based classifier system inspired by 

[14], to compare with our proposed attribute-based classifier 

system. We should remark that the above two phone-based systems 

were trained and evaluated on our datasets and not those used in 

[14]. Although minor implementations differences might exist 

between our implementation and the MSRA systems in [14], the 

overall accuracy should not be heavily impacted. Therefore, we 

consider that the proposed one-to-one comparison fair.  

Regarding phone-based GOP system, the training set from the 

native speech and non-native speech corpora are combined to train 

the CD-DNN-HMM acoustic models, which are used to calculate 

segmental pronunciation scores, where the unit p in Eqs. (1) and 

(2) is set to phone. The acoustic feature used to train the CD-DNN-

HMM systems is 39-dim MFCC+Δ+ΔΔ. The DNN has six hidden 

layers, each with 2048 sigmoid units. The softmax function was 

employed at the output layer whose target classes are 2160 senone 

states [32] obtained from CD-GMM-HMM trained with a 

maximum likelihood criterion. The input to all the DNNs used in 

this paper is an augmented 11-frame vector, including 5 preceding, 

the current and 5 succeeding frames. A series of ASR experiments 

on the test set of the iCALL corpus is carried to assess the quality 

of this acoustic model. A free syllable loop grammar was used in 

the decoding process. The size of syllable counts is 420. Due to 

many confusable syllable pairs, the syllable recognition error rate 

is 34.71%, comparable to that achieved in [33]. 

After generating phone log-posteriors, augmented phone-level 

feature vectors were fed into the phone-based classifier system like 

our merger in the Figure 1. The difference between [14] and our 

implementation is that the output layer’ labels change from two 

class labels (correct vs incorrect phone) to phone labels in order to 

provide a segmental-level feedback, e.g., phone substitution, in 

addition to detecting mispronunciations. After evaluating different 

number of hidden layers (1 or 2) and hidden nodes (512, 1024, and 

2048) for each layer, we observed that 1 hidden non-linear layer 

with 1024 units gave the best performance on the training data. 

 

4.3. Attribute-based Classifier System Setup 

 
The input feature in Figure 1 is a 39-dim MFCC+Δ+ΔΔ vector. 

After forced-alignment, context dependent (CD) attribute labels are 

separately used to train corresponding DNNs containing 6 hidden 

layers each having 2048 sigmoid units. The softmax function was 

employed at the output layer. Each attribute classifier generates 

CD acoustic-phonetic feature (attribute) posteriors (e.g., stop-

vowel+nasal). These probabilities are fed into the GOP calculator 

to compute the sub-segmental scores, which are subsequently used 

for sub-segmental mispronunciation detection. Finally sub-

segmental scores are merged into segmental scores by neural 

networks to detect mispronunciation at the segmental level, namely 

at a phone level. After evaluating the different number of hidden 

layers (1 or 2) and hidden nodes (512, 1024, and 2048) for each 

layer, we observed that 1 hidden non-linear layer with 1024 units 

gave the best performance on the training data. 

 

4.4. Evaluation Metrics 

 
In this study, four metrics, namely precision, recall, detection 

accuracy (DEA) and diagnostic accuracy (DA), are used to 

evaluate the performance of each mispronunciation system: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑀

𝑁𝐷
∗ 100%                                    (3) 

𝑅𝑒𝑎𝑐𝑙𝑙 =  
𝑁𝑀

𝑁𝐻
∗ 100%                                           (4) 

𝐷𝐸𝐴 =  
𝑁𝑀 +  𝑁𝐶

𝑁
∗ 100%                                    (5) 
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𝐷𝐴 =  
𝑁𝐹

𝑁𝑀
∗ 100%                                                   (6) 

where 𝑁𝑀 is the number of true mispronunciations detected, 𝑁𝐷 is 

the total number of detected mispronunciations, 𝑁𝐻  is the total 

number of mispronunciations labeled by a human expert, 𝑁𝐶 is the 

number of true correct pronunciation detected by the system; 𝑁𝐹 is 

the number of truly detected mispronunciation, where feedback is 

correct, and N is the number of phone or attribute in the test set. 

 

4.5. Experimental Results 

 
Table 2 shows 1-EER (equal error rate), and the sub-segmental 

mispronunciation detection performance, DEA and DA, at the EER 

operating point when precision equals recall. Table 3 compares 

three systems: our attribute-based classifier system, phone-based 

GOP and classifier systems, at the segmental level. Figure 2 shows 

precision recall curves and the 1-EER points. 

 

Table 2. Detection and diagnostic accuracy at the EER operating 

point where precision is set the same as recall (sub-segmental) 

 1-EER DEA DA 

VOICING 77.68% 99.4% 100% 

ASPIRATION 77.35% 95.7% 96.3% 

MANNER 73.92% 96.7% 97.0% 

PLACE 63.92% 95.5% 93.9% 

 

Table 3. Detection and diagnostic accuracy where precision is set 

to be the same as recall (segmental level) 

 1-EER DEA DA 

PHONE-BASED 

GOP SYSTEM 
77.80% 90.84% 86.08% 

PHONE-BASED 

CLASSIFIER SYSTEM 
79.20% 91.32% 86.99% 

ATTRIBUTE-BASED 

CLASSIFIER SYSTEM 
79.75% 91.57% 87.01% 

 
 

4.6. Discussions 

 
In this work, we examine mispronunciations in five categories. 

Four of which are at the sub-segmental level, and the remaining 

one at the segmental level. For each category, a single threshold is 

used to determine the correctness of non-native pronunciations. We 

discuss Figure 2, Table 2 and Table 3 below. 

 Regarding the segmental level, our proposed attribute–based 

classifier system outperforms the MSRA-style phone-based GOP 

system with a relative EER reduction of 8.78% (see Figure 2). The 

corresponding detection and diagnostic errors were relatively 

reduced by 7.97% and 6.68%, respectively. Furthermore, 

compared with standard phone-based classifier systems, the 

proposed attribute-based approach attains competitive performance 

as shown in Figure 2, while providing useful sub-segmental level 

feedback, which will be illustrated in the following. 

Unlike phone modeling units, our proposed speech attributes 

can be used to detect mispronunciation at the sub-segmental level. 

From Table 2, we can leverage upon the high DEA and DA rates to 

deploy attributes for mispronunciation detection and feedback. 

Figure 3 is an example using the place of articulation units to 

detect mispronunciations. The upper panel plots the spectrogram of 

one syllable and its corresponding canonical phone sequence. 

Compared with its surface phone sequence, we find that the 

unaspirated retroflex affricate phone /zh/ is mispronounced to its 

dental counterpart /z/. Our speech attribute detection results shown 

in the lower panel find that the retroflex posterior is much lower 

than the dental posterior. However the place of articulation of the 

canonical phone /zh/ should be retroflex. Reflecting on the above 

observations, our sub-segmental feedback could be formulated as 

“Try to move your tongue tip backwards so that the edges of your 

tongue are touching your hard palate”. This feedback at the sub-

segmental level is specific and can enrich the traditional diagnostic 

information, e.g., phone substitution. 

Different sub-segmental categories have different detection 

performances, e.g., voicing achieves the best EER, DEA and DA, 

as shown in Table 2, while place of articulation is less accurate as 

indicated. The performance discrepancy is partly due to the fact 

that there are more attribute classes for place of articulation.  In 

addition, Mandarin affricates and fricatives differ subtlety in terms 

of acoustics in the coronal region (e.g., alveolar, retroflex, palatal). 

 

Figure 3: Sub-segmental mispronunciation detection using speech 

attributes (place of articulation). The canonical and surface 

transcriptions are shown in the upper and lower panel respectively. 

 

5. CONCLUSION AND FUTURE WORK 

 
In this paper, speech attribute modeling is proposed to provide 

comprehensive diagnostic feedback at the segmental and sub-

segmental level for non-native mispronunciations. Compared with 

the phone-based baselines, our proposed attribute-based system 

achieves better detection results than GOP-based approaches and 

comparable detection results with classification-based approaches 

at the segmental phone level with an advantage of speech attribute 

portability across different languages [34]. For future work, the 

detection errors produced by phone-based and attribute-based 

systems will be analyzed. Systems combination will also be 

investigated. Furthermore, a recent DNN extension to GOP [35] 

and similar DNN-based utterance verification [7-11] extensions 

can also be utilized to improve frame-level and segment-level 

pronunciation verification. 

  
Figure 2: Comparing segmental detection performance 
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