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ABSTRACT 

Question detection is of importance for many speech 
applications. Only parts of the speech utterances can 
provide useful clues for question detection. Previous work 
of question detection using acoustic features in Mandarin 
conversation is weak in capturing such proper time context 
information, which could be modeled essentially in 
recurrent neural network (RNN) structure.  In this paper, we 
conduct an investigation on recurrent approaches to cope 
with this problem. Based on gated recurrent unit (GRU), we 
build different RNN and bidirectional RNN (BRNN) 
models to extract efficient features at segment and utterance 
level. The particular advantage of GRU is it can determine a 
proper time scale to extract high-level contextual features. 
Experimental results show that the features extracted within 
proper time scale make the classifier perform better than the 
baseline method with pre-designed lexical and acoustic 
feature set.  
 

Index Terms— question detection, gated recurrent unit 
(GRU), bidirectional recurrent neural network (BRNN) 

1. INTRODUCTION 

Detecting questions in human conversations is meaningful 
for exploring the usage of rich information in speech signal 
and is an important step in building artificial systems that 
can better understand natural languages. Question in speech 
could provide useful clues for identifying speaker’s role in a 
dialog involving multiple speakers [1]. Question detection 
can be used for automatic meeting index and summarization 
as question/answer pairs [2].  

Previous work on question detection considers not only 
lexical features but also prosodic-acoustic features. Lexical 
features have shown better application performances [3][4] 
and take the key position in question detection system. 
However, there are two major problems for question 

detection using lexical features only. First, some questions 
share the same lexical representation (i.e. words) with its 
statement form. Second, in most spoken dialog systems, 
automatic speech recognition (ASR) is the foremost step 
whose performance will have huge impacts on the following 
question detection steps [5].  

The work in [6] presented the potentials of prosodic 
feature based classifiers and made it a feasible way to 
identify English dialog acts from acoustic features. [5][7] 
extended the work to French and Vietnamese, and found it a 
useful way to detect interrogative intonation in non-tone 
languages by using prosodic features with decision tree. 

When using classifiers such as decision tree (DT) [3], 
question detection for tone languages like Mandarin usually 
begins with extracting features by considering prior 
phonetic knowledge. However, these features are 
incomplete for the question detection task. [8] combined 
prosodic and mel-frequency cepstrum coefficients (MFCCs) 
for detecting interrogative intonation in Mandarin and 
achieved improved performance using support vector 
machine (SVM). 

One main problem of previous work is that traditional 
classifiers like DT or SVM are unable to incorporate the 
contextual information, on which question detection mainly 
relies. Recurrent neural networks (RNN) can model context 
information along time steps of sequence [9]. Inspired by 
this characteristic, we propose an approach for question 
detection using improved RNN structures. Specifically, 
acoustic low level descriptors (LLD) including F0 related 
features, energy related features and spectral related features 
are brought in to feed the network with fully integrated 
information; and then gated recurrent units (GRU) are 
incorporated for building different RNN structures by 
taking the advantage of GRU in deciding proper time scale 
for high-level contextual feature extraction. 

The rest of the paper is organized as follows. A brief 
introduction of used basic RNN structures is given in 
Section2. Section 3 introduces the proposed models and 
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features in our approach. Experimental setup and results are 
presented in Section 4. Finally, Section 5 lays out the 
conclusion and discussion of our work. 

2. RECURRENT NEURAL NETWORK 

2.1. Bidirectional Recurrent Neural Network (BRNN) 

A recurrent neural network (RNN) is able to map from the 
whole memory of previous inputs to the output at current 
time step, which is significant for speech signal processing 
with close time step relationship. Standard RNN can only 
access information from the previous inputs. However, in 
speech production, the pronunciation of a segment may also 
have correlations with the future segments. Bidirectional 
RNN (BRNN) [10] is able to access past and future context 
by processing data in both directions. 
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Fig.1. Illustration for the structure of BRNN 

As illustrated in Fig.1, the main idea of BRNN is to 
divide the hidden layer of a standard RNN into forward 
states part and backward states part. Both parts connect to 
the same input layer and the same output layer, but without 
direct connections between the two parts. The difference 
between the two parts is that forward states are calculated 
by past inputs along positive time axis while backward 
states are calculated by future inputs along reverse time axis. 

2.2. Gated Recurrent Unit (GRU) 

Study of error flow in RNN shows that the standard RNN 
structure can only keep short-term memory [11] because of 
the vanishing gradient problem. Gated recurrent unit (GRU) 
was proposed in [12] to make recurrent blocks adaptively 
capture the dependencies of different time scales.  

Fig.2(b) depicts the illustration of GRU. The activation 
function (“f”, “g”) is usually tanh or sigmoid function. In 
the j-th GRU, when given an input vector tx  at time t , the 
candidate update j

th  needs to be calculated first:  

 j

ttt

j

th ))(tanh(
~

1 hrUWx , 

where   is an element-wise multiplication operation and a 
set of reset gates tr  controls how much the unit updates 

from all units’ previous activations 1th  in the same layer. 
And a reset gate j

tr  is computed by:  
 1( )j j

t r t r tr   W x U h  . 

The activation function   is a sigmoid function. Then the 
activation of the GRU is generated from its previous 
activation and its current candidate update: 

 1(1 )j j j j j
t t t t th z h z h     , 

where the update gate j
tz  decides how much the unit 

updates from its activation and is calculated as:  
 1( )j j

t z t z tz   W x U h  . 









g

h

g



j
th

j
th

j
tr

j
tz

1 j
tz

 

Fig.2. Illustration for the structures of LSTM and GRU 

The main difference between GRU and long short term 
memory (LSTM) [13] is that the memory cell in LSTM does 
not exist in GRU. As shown in Fig.2(a), there are three 
gates and one memory cell in a LSTM block. Input gate, 
forget gate and output gate separately control the data flow 
from input, memory and output. The activations of input 
gate, forget gate and output gate depend on current input, 
previous memory and previous or current output.  

While in GRU, the number of gates is reduced. The 
activations of gates in GRU only depends on current input 
and previous output. Due to the reduction in parameters, 
models using GRU tends to converge faster, and the final 
solution tends to be better than models using LSTM in some 
tasks [20].  

3. APPROACHES FOR QUESTION DETECTION 

3.1. Framework 

Fig.3 depicts the framework of the proposed approach for 
question detection. The acoustic feature sequence is first 
extracted from speech signal of input sentence and 
normalized at sentence level by sequence standardize 
module. The j-th feature i

js  in the i-th sequence is 
standardized to i

jx  by:  
 i

j

i

j

i

j

i

j  /)(  sx  , 

where i
j  is the mean of the features and i

j  is the standard 
deviation of the features of the i-th feature sequence.  
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The standardized feature sequence is then fed into the 
RNN model for extracting high-level contextual features Th . 
Collect layer accepts these features for final decision. For 
the i-th sequence, the activation of collect layer is then:  
 ( )i i

c T cc  W h b  , 

where cW  is the weight vector and cb  is the bias value of 
collect layer.  

For binary classification of our task, a round function is 
used as the final decider. The label il  of the i-th sequence is 
assigned by: 
 )( i

i croundl   . 

Th

 

Fig.3. Framework of proposed question detection approach 

3.2. Models 

To capture different context structures in speech signal for 
question detection, different models are proposed including 
GRU-RNN, GRU-BRNN and GRU-DBRNN, serving as the 
RNN model in the above framework to extract high-level 
contextual features Th . 

3.2.1 GRU-RNN 

We begin with the standard GRU-RNN network structure 
by replacing the hidden units of RNN with GRUs. For a 
GRU-RNN with m GRUs and an input sequence [x1,x2,…, 
xT] with time length T, the output sequence [h1,h2,…,hT] is 
calculated by:  
 T

1 2[ ( ), ( ),..., ( )]t t t m t   h x x x , 

where   is the activation of a single GRU as in Section 2. 

3.2.2 GRU-BRNN 

To extract contextual information from both directions, we 
embed GRU in both forward and backward states of BRNN. 
For a GRU-BRNN with m GRUs in both states and an input 
sequence [x1,x2,…,xT], the output sequence [h1,h2,…,hT] is a 
concatenation from both states: 
 T

1 1[ ( ),..., ( ), ( ),..., ( )]t t m t t m t    h x x x x , 

where   is the activation of a single GRU in forward states 

with memory from 1 to t-1,   is the activation of a single 
GRU in backward states with memory from T to t+1. Both 
of them share the same calculation method as in Section 2. 

3.2.3 GRU-DBRNN 

Aiming at modeling higher-level representation, we build 
GRU-DBRNN model by stacking two GRU-BRNN layers. 
The first GRU-BRNN layer with m GRUs in both states 
receives the input sequence [x1,x2,…,xT] and derives the 
output [h1,h2,…,hT]1 by:  
 1 1 1 1 1 T

1 1[ ( ),..., ( ), ( ),..., ( )]t t m t t m t    h x x x x , 

where 1  and 1  are the activations of a single GRU in 
forward states and backward states of the first layer. 

Then the second GRU-BRNN layer generates the final 
output sequence [h1,h2,…,hT] by:  
 2 1 2 1 2 1 2 1 T

1 1[ ( ),..., ( ), ( ),..., ( )]t t m t t m t    h h h h h , 

where the forward activation and backward activation of a 
single GRU in the second layer are 2  and 2 . 

3.3. Features 

In previous research, there is a universal hypothesis that 
pitch carries the major information of question. Though 
typical interrogative intonation in Mandarin questions is 
formed with the rising boundary tone, there still are many 
variations due to the sentence type and sentence structure 
[14]. Inspired by work on speech emotion recognition [15], 
we use acoustic low level descriptors (LLD) and their first 
order derivatives as the basic acoustic features.  

Covering short-term features in each time frame, LLD 
can be used to characterize any type of sound [16]. In this 
work, we use LLD feature set proposed in INTERSPEECH 
2014 Computational Paralinguistic Challenge [17] with total 
65 features, including 4 energy related LLD (Loudness 2, 
Energy 1, ZCR 1), 55 spectral related LLD (Bands 26, 
MFCC 14, Others 15) and 6 voicing related LLD ( 0F  2, 
Prob. of voicing 1, HNR 1, Jitter 2, Shimmer 1).  

4. EXPERIMENT 

4.1. Experimental Setup 

We use a simulated Call Center Recording of Mandarin as 
our experiment dataset [18]. The simulated corpus consists 
of 408 dialogs with duration between 40 to 90 seconds. 
Each dialog involves 2 speakers. 20 native speakers of 
Mandarin from college students were invited to participate 
in recoding the dialogs. 3 labelers were asked to annotate 
each sentence in dialogs with the sentence type manually. If 
there were any inconsistences between the annotated results, 
the labelers were gathered together for discussion to reach 
the agreement. 

There are 2,850 question sentences (Q) and 3,142 non-
question sentences (NQ) like statements or greetings. Each 
sentence is saved in Microsoft wav format and sampled at 
16 KHz. The 20ms windows size and 10ms window shift 
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are then used to convert the raw wav data into frames. 
OpenSMILE [19] is chosen as the feature extractor to obtain 
the LLD (as in Section 3.3) and their first order derivatives 
with 130 dimensions in total.  

Table 1. The number of units in each hidden layer. “F” is 
the forward states and “B” is the backward states in BRNN.  

Model L1 L2  # Params
GRU-RNN 128 - 132k 

LSTM-RNN 128 - 99k 
Model F B F B # Params

GRU-BRNN 64 64 - - 75k 
LSTM-BRNN 64 64 - - 99k 
GRU-DBRNN 32 32 32 32 50k 

LSTM-DBRNN 32 32 32 32 67k
Model L1 L2 L3 L4 # Params

Simple-DNN 128 128 128 128 66k 
 

Besides the three GRU based neural network models in 
Section 3, we also implement LSTM models with the same 
structure as GRU networks and a simple DNN model with 4 
hidden layers for performance comparison. All the 
implementations of the models are based on Theano [21, 22] 
and Keras 0.1.2 [23]. Table 1 summarizes the network 
architectures of different models showing the unit number at 
each layer in each model. The normalized uniform 
initialization in [24] is used to initialize the hidden layers of 
the above models, and Adam [25] ( 1 3, 1 8lr e e   － )  is 
adopted for training models.  

According to the previous work [3], we choose C4.5 
decision tree based hybrid system using lexical and acoustic 
features (DT-LA) as the baseline. The lexical features used 
in this system include interrogative pronouns, sentence final 
particle, A not A construction, the positions of the terms, the 
number of words in whole sentence and the word “you” or 
“your”. Acoustic features are derived from our 130 LLD 
feature set in Section 3.3 by applying 7 functions including 
max, min, mean, variance, range, lower and upper quartile. 
SVM and the above simple DNN model are used to classify 
sentence type from acoustic features only, where the 
acoustic feature set is the same as used in DT-LA system.  

4.2. Experiment Results 

We use the measurements precision (P), recall (R) and F1-
measure for objective evaluation as follows: 

 _ _

_ _

correctly detected questions

total detected questions

N
P

N
  , 

 _ _

_

correctly detected questions

total questions

N
R

N
  , 

 
2

1
P R

F
P R





 , 

where _ _correctly detected questionsN  is the number of true questions 

detected, _ _total detected questionsN is the number of all questions 
detected, _total questionsN is the number of true questions in our 
test set. The final results are obtained from the mean values 
of these measurements in 5-folds cross validation. 

Table 2. Objective evaluation results of each model.  

Model Precision Recall F1 
SVM 68.7% 71.3% 70.0%

DT-LA 73.0% 80.0% 76.4%
Simple-DNN 74.0% 76.5% 75.3%
GRU-RNN 87.1% 79.0% 82.8%

LSTM-RNN 80.5% 85.4% 82.9%
GRU-BRNN 83.6% 87.5% 85.5%

LSTM-BRNN 82.6% 83.8% 83.2%
GRU-DBRNN 82.8% 84.9% 83.9%

LSTM-DBRNN 84.0% 82.3% 83.1%
 

From the F1-measure in Table 2, when using acoustic 
features only for classification, our RNN based approaches 
outperform the SVM method and the simple DNN model. 
Compared to the simple DNN model, contextual features 
extracted by RNN structures are efficient for the question 
detection task. In our experiment, GRU based networks tend 
to get slightly better result than LSTM RNNs. At least 6% 
absolute improvement in F-measure than the DT-LA system 
demonstrates RNNs’ usefulness in modelling particular 
context information in acoustic aspect. 

5. CONCLUSION 

In this work, we proposed gated recurrent unit (GRU) based 
recurrent network for the task of detecting questions in 
Mandarin conversational speech. GRU can be used to model 
context information of speech question at segment and 
utterance level from acoustic features. We do not have to 
use pre-designed or selected feature set, and can get better 
result than previous work with combined lexical features 
and utterance level acoustic features. Results indicate that, 
in complex network structures, GRU with less parameters 
tends to perform slightly better than LSTM. We will 
concentrate on fine-tuning our models and making analysis 
on how RNN models context information in our question 
detection task. 
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