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ABSTRACT

In human-human interaction, people tend to adapt to each other as
the conversation progresses, mirroring their intonation, speech rate,
fundamental frequency, word selection, hand gestures, and head
movements. This phenomenon is known as synchrony, convergence,
entrainment, and adaptation. Recent studies have investigated this
phenomenon at different dimensions and levels for single modalities.
However, the interplay between modalities at a local level to study
synchrony between conversational partners is an open question.
This paper studies synchrony using a multimodal approach based
on sequential pattern mining in dyadic conversations. This analysis
deals with both acoustic and text-based features at a local level.
The proposed data-driven framework identifies frequent sequences
containing events from multiple modalities that can quantify the
synchrony between conversational partners (e.g., a speaker reduces
speech rate when the other utters disfluencies). The evaluation relies
on 90 sessions from the Fishers corpus, which comprises telephone
conversations between two people. We develop a multimodal metric
to quantify synchrony between conversational partners using this
framework. We report initial results on this metric by comparing
actual dyadic conversations with sessions artificially created by
randomly pairing the speakers.

Index Terms— Human-Human Interaction; Synchrony; En-
trainment; Convergence; Multimodal

1. INTRODUCTION

The adaptation of the interlocutors to one another in human con-
versations has been long established in early research in the field
of psychology and communication science [1]. This adaptation of
the speakers has been referred to with several terms such as syn-
chrony, entrainment, mimicry, convergence, alignment, accommo-
dation, reciprocity and mirroring. Early research in this area has
focused on the evidence and measurement of entrainment in vari-
ous modalities and at different levels. The studies have considered
and reported evidences of synchrony in acoustic, lexical and visual
modalities at local and global levels [2-8].

Previous studies have explored evidences of synchrony within
a single modality (e.g., when one speaker increases his/her speech
rate, the other responds by speaking faster). However, human
communication is inherently multimodal. We hypothesize that syn-
chrony is a broader phenomenon where “events” happening in one
modality (e.g., producing disfluencies) affects events produced by
the interlocutor in the same, or different modality (e.g., decreasing
speaking rate). Identifying patterns across modalities can improve
our understanding about social communication. This paper explores
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a data-driven framework to identify sequences of multimodal events
produced by speakers that appear during natural human interactions.

This paper explores the use of sequential pattern mining to study
the role of synchrony in dyadic conversations. We use prosodic and
text-based features to study synchrony at the turn level. The concept
of sequential patterns comes from the field of data mining, and was
first introduced by Agarwal et al. [9] for market basket analysis. The
framework has been used in various applications where sequence of
patterns need to be identified such as biological protein sequences
and website click streams [10]. It is a suitable framework to identify
sequence of events across modalities that are produced by speakers
during the course of natural interactions. Unlike previous work, this
framework allows us to extract the local interplay of multiple modal-
ities that lead to synchrony. This framework has been used before in
the area of multimodal signal processing for modeling user experi-
ence in gaming [11]. The count of the sequential patterns were used
as features, for classifying the users affect in a Maze-Ball game. This
is the first time that this work is used in the context of synchrony.

2. RELATED WORK

Nenkova et al. [2] explored entrainment at the linguistic level, con-
cluding that the use of high-frequency words was significantly cor-
related with task success. It was also observed that higher degrees of
entrainment are associated with more overlaps and fewer interrup-
tions during the interaction. Lee et al. [3] quantified entrainment at
the acoustic level using the information from the fundamental fre-
quency and energy in speech (Pearson correlation, mutual informa-
tion, and mean of spectral coherence). They also successfully used
these quantized entrainment measures to classify positive and neg-
ative affects with an accuracy of 76%. Heldner et al. [4] studied
local entrainment in the fundamental frequency, demonstrating that
the FO contour during backchannels was more similar to the immedi-
ately preceding utterances of the opposite speaker than during non-
backchannels. Levitan and Hirschberg [5] measured and quantified
entrainment at multiple levels and dimensions. They explored en-
trainment at both the turn and session level and also studied its effect
in four acoustic dimensions - energy, fundamental frequency, speak-
ing rate and voice quality. Also, three different views were con-
sidered, namely, proximity, convergence and synchrony. De Looze
et al. [7] studied the dynamics of prosodic accommodation within
and across dyadic telephonic conversations. Scherer et al. [12] stud-
ied the effect of accommodation on depression severity assessment
during interviews. Gravano et al. [6] provided a measure of prosodic
entrainment capturing backward mimicry, where the FO contour used
by a speaker, was previously used by the interlocutor, and forward
influence, where the FO contour used by a speaker is used by the in-
terlocutor in the following turns. They compare this metric with the
level of engagement. Xiao et al. [8] derived a measure for entrain-
ment using speech rate, investigating its relation with empathy.
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Table 1. Sequence Database - Example

Seq.# Sequence
1 <(a)(b)>
2 <(ac)(b)>
3 <(abc)(ab)>
4 <(a)(ab)>

The measurement and quantification of entrainment could be
used to improve the existing spoken dialogue systems, by incorpo-
rating the complex dynamics involved in social interaction [7]. Ex-
isting emotion recognition systems could be improved by leveraging
emotional entrainment. For example, Lee et al. [13] used speech
based features to model the mutual influence, which was then used
to recognize the emotion of the participants improving the classifica-
tion accuracy. Mariooryad and Busso [14] used acoustic and visual
features, utilizing cross-modality and cross-speaker information to
improve the performance of an emotion recognition system. Bell et
al. [15] reported entrainment between a user and an interface. By re-
ducing the speech rate of the interface, they indirectly influenced the
speech rate of the users, increasing the performance of an automatic
speech recognition (ASR) system.

All these studies explore synchrony only within a single modal-
ity. They do not address the problem of synchrony across modalities,
which is the focus of this paper.

3. THE FISHER’S CORPUS

This study relies on the Fisher’s corpus, which is a large database of
conversational telephone speech, collected by the Linguistic Data
Consortium (LDC) [16]. In every session (or call) the speakers
were randomly assigned topics from a list. Since the speakers are
randomly assigned for every telephone call, it is expected that the
speakers naturally tend to adapt to one another as the conversation
progresses, depicting some form of synchrony. This is the reason
for choosing the Fisher’s corpus for our study on synchrony. Each
conversation lasted for about 10 minutes. This study uses the speech
files and the transcriptions of the conversations to derive the acoustic
and text-based features. We use forced alignment to determine the
phoneme and word alignments.

We only consider the first 90 sessions from the Fishers corpus
which are divided into three partitions with 30 sessions each: train-
ing, validation and testing. We use the training set to create a master
list with all the frequent sequences (Sec. 5.2). We use the validation
set to select the best sequences that are indicative of synchrony (Sec.
5.3). We use the testing set to evaluate the selected sequences on
different recordings (Sec. 6).

4. SEQUENTIAL PATTERN MINING

This section briefly explains the concept of sequential pattern min-
ing and defines its terminology. For a given database of sequences,
sequential pattern mining finds all the sequential patterns that occur
more frequently than a given support (i.e., a user defined threshold).
An event ey, is an observation that we are interested, which in our
study corresponds to cues such as disfluencies, and an increase in FO
value. A set of events forms an ifemset 15, which is an unordered
list of events of the form (ejes...ep,). Events in an itemset have
no temporal order and are assumed to occur simultaneously within
the itemset. A sequence is an ordered list of itemsets of the form
< t1%2...t, >, where each 7;, represents an itemset. The support for
a sequence is the fraction of the total data sequences that contain this
particular sequence.

Consider the example of the sequence database shown in Ta-
ble 1. Here, a,b, c,d are events, events within parenthesis forms
the itemsets (e.g., (a,b)), and each row in the table is a sequence
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Fig. 1. Definition of speaking turns. The speaking turn is always
followed by a speaking turn of the interlocutor.

(e.g., <(a)(b)>; a is an event in an itemset, and b is an event in the
next itemset). Suppose, the minimum support is 2, then <(a)(b)>
would be a frequent sequence, since it has a support of 4. Notice that
<(a)(b)> is a subsequence of all the four sequences <(a)(b)>,
<(ac)(b)>, <(abc)(ab)> and <(a)(ab)>, so it has support of 4.

We adapt this framework to our problem by considering events
such as high intensity, high FO contour, laughter, or high turn dura-
tion. First, we define speaking turns as the segments starting when
one subject begins to speak and finishing when the next subject be-
gins to speak. These segments can include multiple sentences or
phases (see Fig. 1 where 15,1 and 7,2 represent speaking turns that
have multiple sentences t,1 and t,2). With this definition, speak-
ing turns alternate between speakers. Second, we extract all the
events observed in the segment, defining an itemset for each speak-
ing turn. We create the sequence database by adding consecutive
pairs of itemsets, i.e. an itemset of the turn of one speaker followed
by the itemset of the immediate turn of the other speaker in a conver-
sation. These pairs of itemsets represent important local information
capturing sequence of events across speakers (e.g., one speaker in-
creases the intensity, the other speaker laughs).

As the list of sequences and the subsequences is huge, this
framework uses sequential pattern mining to discover the sequences
that frequently happen in the data. This is a novel, data driven, mul-
timodal framework that fuses local information from the acoustic
and text-based features by building the sequence databases. We em-
ployed the SPADE algorithm [17] to extract the frequent sequences.
The SPADE algorithm decomposes the original problem of finding
the frequent sequences into smaller sub-problems, which can be
independently solved using efficient lattice search techniques and
simple join operations. We use the implementation of SPMF, an
open source data mining Java library [18].

5. METHODOLOGY

This section presents the steps involved in mining the frequent se-
quences from the multimodal data (Fig.2). We extract the features,
generate events for each speaking turn, build a sequence database,
and discover the frequent sequences based on the sequential pattern
mining approach. Finally, we identify the best sequence pairs which
we expect to describe synchrony.

5.1. Defining the Events

The proposed framework is flexible, allowing us to consider events
across multiple modalities. We have incorporated a wide range of
events, so that the framework can discover the frequent sequences.
This study evaluates the approach using prosodic and text-based fea-
tures. From speech, we estimate the intensity and fundamental fre-
quency using the OpenSMILE toolkit [19] over frames of 25ms with

FREQUENT

FEATURE EVENT
e b SEQUENCE  feep|
[speecH | EXTRACTION > GENERATION GENERATION

MEASURE FOR
SYNCHRONY

Fig. 2. Block Diagram of the framework
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Table 2. List of events used in this study. The events are automatically extracted from the speech and transcription of the recordings.

# Event [[# Event [[# Event [[# Event [[# Event
1 High intensity 9 Disfluency-Fillers 17 Low word rate 25 # L+!H*: bitonal pitch accent with low 33 # H-: high phrase
tone followed by a downstepped high accent
tone prominence
2 Least min intensity 10 Disfluency- 18 High Word Rate 26 # L*+!H: bitonal pitch accent with low 34 #L-: low phrase ac-
Discourse marker tone prominence followed by down- cent
stepped high tone
3 Highest max inten- 11 Disfluency-Editing 19 Laughter 27 #H+!H*: bitonal pitch accent with high 35 # !H-: downstepped
sity term tone followed by downstepped high high phrase accent
prominence
4 Highest range inten- 12 Disfluency- 20 #H*: high pitch accent 28 #L-L%: low phrase accent, low bound- 36 Break Tier 1
sity Repetition ary tone
5 Highest FO 13 Low Turn Duration 21 #L*: low pitch accent 29 # H-H%: high phrase accent, high 37 Break Tier 2
boundary tone
6 Least min FO 14 High Turn Duration 22 # L+H*: bitonal pitch accent with low 30 # L-H%: low phrase accent, high 38 Break Tier 3
tone followed by high tone prominence boundary tone
7 Highest max FO 15 Low phoneme rate 23 # L*+H: bitonal pitch accent with low 31 # H-L%: high phrase accent, low 39 Break Tier 4
tone prominence followed by high tone boundary tone
8 Highest range FO 16 High Phoneme Rate 24 # 'H*: downstepped high pitch accent 32 # !H-L%: downstepped high phrase ac-
cent, low boundary tone

Table 3. Master List - Top 10 sequences with the highest support.

Seq.# Sequence SUP Seq.# Sequence SUP
1 <(9)9)> 0.185 6 <(14,36)(9)> | 0.133
2 <(14)9)> | 0.183 7 <(DHO)> 0.128
3 <914)> | 0.149 8 <(14)(14)> 0.124
4 <(36)(9)> | 0.144 9 <(9)(10)> 0.122
5 <(10)(9)> | 0.138 10 <(14)(10)> 0.113

a step size of 10ms. We estimate the minimum, maximum and range
of the intensity and fundamental frequency for each speaking turn.
The text-based events describe disfluency, turn duration, phoneme
rate, word rate and laughs. We extract these features from the tran-
scriptions of the recordings and the phoneme and word alignments.

For simplicity, most of the events correspond to either lower or
higher values of certain features (e.g., high fundamental frequency).
For this purpose, we estimate the distributions of the features per
speaker, computing first and third quartile. Low values correspond
to features below the first quartile and high values correspond to fea-
tures above the third quartile. There are 39 events in total listed in
Table 2, which are described next.

5.1.1. Acoustic Events
An event of high intensity (1) occurs within a turn, when the number
of intensity peaks is greater than a fixed threshold. First, we esti-
mate the distribution of intensity values across all frames. We select
intensity peaks by locating segments in which their intensity values
exceed the upper third quartile in the intensity distribution. Then,
we count the number of intensity peaks per speaker turn. An event
is detected in a turn if its number of intensity peaks is higher than
the value associated with the third quartile of number of peaks per
speaking turn. The thresholds are separately determined for each
speaker. For events involving the functionals - minimum, maximum
and range, we first extract the functionals for each turn. For a given
speaker, we determine a threshold based on either the first or the third
quartile over the set of the functionals across all turns. The event of
least minimum intensity (2) was determined based on the first quar-
tile threshold. The events the highest maximum intensity (3) and
the highest range (4) were obtained based on the third quartile of
their respective values. We also estimate events from the fundamen-
tal frequency following a similar approach. This study considers the
following events: high FO (5), the least minimum (6), the highest
maximum (7) and the highest range (8) of FO contour values.

We define 21 events related to the Tone and Break Index (ToBI).
We estimate ToBI labels using the toolkit AuToBI [20]. In tone tier,
the subtle changes in the prosody information are captured and rep-
resented with the symbols like H* for high pitch accent (20), L* for

low pitch (21). We include other ToBI labels (22-35), as shown in
Table 2. The break tier (36-39) represents the amount of disjuncture
between words and has a value from ’0’ to ’4’. An index of 1’ indi-
cates a typical word boundary, whereas ’4’ indicates an intonational
phrase boundary. We count the number of tone and break indices
over turns, defining events based on the third quartile threshold.

5.1.2. Text Events:

From the transcriptions, we estimate 11 events. First, we estimate
disfluencies, where we consider four types: fillers (9) such as 'uh’
and ’um’, discourse markers (10) such as well’ and ’you know’,
editing terms (11) like ’I mean’ and ’sorry’, and repetitions (12) [21].
The presence of each of these disfluencies in a turn is labeled as
an event. The turn duration, phoneme rate and word rate are ob-
tained from the forced alignment files for each turn. The number of
phonemes and words are counted and divided by the turn duration
to obtain the phoneme and word rates, respectively. If the turn dura-
tion, phoneme rate and word rate for a turn are greater than the third
quartile, they are labeled as high turn duration (14), high phoneme
rate (16) and high word rate (18) events, respectively. If they are
less than the first quartile, they are labeled as low turn duration (13),
low phoneme rate (15) and low word rate (17) events, respectively.
Laughter (19) is a miscellaneous event obtained from transcriptions.

5.2. Frequent Sequence Generation

We use the training set to identify frequent sequences. We build the
sequence database by populating each row with the itemsets of con-
secutive turns of both speakers in a session. Itemsets are generated
for each turn by listing all the events in them. As we focus on syn-
chrony at the local level, we limit the size of each sequence in the
database to two itemsets. However, an itemset can contain any num-
ber of events, which are assumed to simultaneously occur during the
speaking turn. Therefore, every sequence in the database contains
two itemsets, one from each speaker. The frequent sequences with a
single itemset are removed, as they carry information related to only
one speaker, and, hence, are irrelevant to this study.

We generated a database for each session in the training set,
keeping the frequent sequences with a minimum support of 5%.
This support is necessary to limit the number of frequent sequences.
With this support, the smallest and largest number of total sequences
for the sessions in the training set are 537 and 62,736, respectively.
We create a master list with 135,123 sequences by listing all the
unique frequent sequences across training sessions. Some of these
sequences do not appear in other sessions. Therefore, we estimate
the average support the sequences over all the training sessions, set-

6087



Table 4. Best Sequences - Top 10 sequences

Seq Sequence SUP Seq Sequence SUP
1 <(14,24,36)(15,17)> | 0.020 6 <(1,36,39)(15)> | 0.021
2 <(24,36)(15,17)> | 0.020 7 <(1,24,36)(15)> | 0.021
3 <(14,24)(15,17)> | 0.021 8 <(1,14,24,36)(15)> | 0.021
4 <(14,24,36)(17)> | 0.028 9 <(1,14,36,39)(17)> | 0.022
5 <(1,14,36,39)(15)> | 0.02 10 <(1,36,39)(17)> | 0.022

ting a minimum support of 2%. This second threshold reduces the
number of sequences to 1,133. Table 3 lists the top 10 sequences.
For example, the first sequence indicates that after a speaker pro-
duces a filler (event #9), the other speaker will also have a filler.

5.3. Selection of Relevant Sequences

The master list contains over 1,000 frequent sequences. Some of
them may be due to events that occur very often (e.g., fillers are very
common). We are not interested in these events. Instead, we want
to identify events associated with synchrony. For this purpose, we
follow an approach commonly used by related work on synchrony.
It consists of comparing results obtained from original recordings
(paired condition) with recordings where we randomly pair speaking
turns from different sessions (unpaired condition) [5] [8]. Events that
happens only based on chances, or because they are very common
events will also appears in randomly paired speaking turns. Notice
that we respect the temporal order of the speaking turns. We just
randomly replace the recordings from one speaker from one session
for the recordings of another speaker from a different session. This
analysis is conducted over the validation set, which is independent
of the training set used to create the master list.

We generate ten random sequence databases for each session. A
random sequence database is generated by randomly pairing one of
the speaker’s itemsets with the itemsets of a speaker from another
session. Frequent sequences from the master list are extracted for
both the actual as well as the random sequence databases. Based on
the master list, the support of a sequence in each of the sessions is
calculated. Like in the previous case, we separately take an aver-
age of the supports over all the sessions for the paired and unpaired
conditions. Then, we compare their supports by taking their ratio.
A large number indicates that a given sequence appears very often
in the paired condition, but not as often in the unpaired condition.
These are the sequences that we expect to be indicative of synchrony
between speakers. Arbitrarily, we only keep the top 100 sequences
with the highest ratio. Table 4 shows the top 10 best sequences, listed
based on their ratio.

6. EXPERIMENTAL EVALUATION

We evaluate this framework with the testing set. While there are
many options to use this framework, we consider a metric created by
adding all the occurrences of the best 100 sequences during a conver-
sation. We compute this metric over the actual sessions in the test-
ing set. For illustration, we also estimate this metric for recordings
with randomly paired conditions (same approach presented in Sec.
5.3). Figure 3 shows the number of these sequences that appears
during the conversation for paired (gray bars) and unpaired (black
bars) conditions for the 30 testing sessions. In 27 out of 30 ses-
sions, the sessions with paired conditions have significantly higher
number of selected sequences than the sessions with unpaired condi-
tion (p<0.001 — z test for two population means). This result shows
that this measure effectively represents local synchrony between the
speakers in dyadic conversations.

Table 4 shows that the events from the text-based features domi-
nates the best sequences. Events such as low phoneme rate and high
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turn duration occur in majority of the best sequences. Consider se-
quence # 3 which says that a high turn duration and a downstepped
high pitch accent of one speaker, triggers a low phoneme and word
rate on the other speaker. This means that if one speaker is speak-
ing slower, then the other person adapts to produce low phoneme
and word rates, which clearly is a manifestation of synchrony. This
metric is a representative measure of the rich local multimodal infor-
mation present in the data. It presents tremendous potential to study
other mental and cognitive conditions such as depression, dominance
and empathy, which are related to synchrony.

Figure 4 shows the temporal variations of the metric for session
17, averaged over 15 speaking turn windows. This session has the
highest number of selected sequences among all the sessions in the
testing set. It is clear that synchrony is a local phenomenon, which
varies dynamically throughout the conversation. This result agrees
with the work by De Looze et al. [7], which showed that prosodic
accommodation varies dynamically in a conversation.

7. CONCLUSIONS AND FUTURE WORK

We proposed a framework to capture the local interplay of multi-
ple modalities in dyadic conversations that lead to synchrony. We
transformed the analysis of synchrony to a pattern mining problem,
thereby leveraging the vast potential of this domain. The sequential
pattern mining provides us with a fast and efficient way to discover
the frequent sequences. Furthermore, we have developed a metric
using this framework which can represent synchrony. This is just
a starting point in the direction of multimodal synchrony analysis.
As a future work, it would be interesting to look at how these se-
quences can be used as features in classification of engagement in
conversations, or in investigating their role in depression or empa-
thy analysis. Also, we will incorporate a variable window, rather
than just considering the adjacent turns. We will also consider other
modalities and events, and potential extensions of the framework to
multi-party interaction.
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