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ABSTRACT

This paper presents ongoing language understanding experiments
conducted as part of a larger effort to create a nutrition dialogue
system that automatically extracts food concepts from a user’s spo-
ken meal description. We first discuss the technical approaches to
understanding, including three methods for incorporating word vec-
tor features into conditional random field (CRF) models for seman-
tic tagging, as well as classifiers for directly associating foods with
properties. We report experiments on both text and spoken data from
an in-domain speech recognizer. On text data, we show that the ad-
dition of word vector features significantly improves performance,
achieving an F1 test score of 90.8 for semantic tagging and 86.3 for
food-property association. On speech, the best model achieves an
F1 test score of 87.5 for semantic tagging and 86.0 for association.
Finally, we conduct an end-to-end system evaluation through a user
study with human ratings of 83% semantic tagging accuracy.

Index Terms— CRF, Word vectors, Semantic tagging

1. INTRODUCTION

For many patients with obesity, diet tracking is often time-
consuming and cumbersome, especially for hard-to-reach, low-
literate populations [1, 2]. In an effort to improve obesity treatment
and prevention techniques, we have begun developing a nutrition
system that accurately and efficiently records food intake through
speech and language technology. Existing applications for tracking
nutrient and caloric intake, such as MyFitnessPal [3], require manu-
ally entering food items one at a time and selecting the correct match
from a list of database entries, whereas our system enables automatic
detection of food concepts through spoken language understanding.

The flow of the overall nutrition system is shown in Figure 1.
After the user generates a meal description by typing or speaking (to
a speech recognizer), the language understanding component labels
each token in the description and assigns properties (i.e., “brand,”
“quantity,” and “description”) to the corresponding “food” tokens.
We used conditional random field (CRF) models for the language un-
derstanding tasks: semantic tagging (i.e., labeling tokens) and food-
property association. The language understanding output is used for
database lookup and image search before responding to the user.

In [5], we discussed the initial data collection and language un-
derstanding of our nutrition system prototype. In this paper, we in-
corporate distributional semantics into semantic tagging models, de-
scribe a new approach for associating foods with properties, build
a domain-specific speech recognizer for evaluation on spoken data,
and evaluate the system in a user study. Specifically, our contribu-
tions are as follows:
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Fig. 1. A diagram of the flow of the nutrition system [4].

• We demonstrate a significant improvement in semantic tag-
ging performance by adding word embedding features to a
classifier. We explore features for both the raw vector values
and similarity to prototype words from each category. In ad-
dition, improving semantic tagging performance benefits the
subsequent task of associating foods with properties.

• We build a nutrition speech recognizer for evaluating the lan-
guage understanding models on spoken data. We also evalu-
ate the system in a user study on Amazon Mechanical Turk.

Related work [6] explored semantic parsing for cooking recipes;
however, for their concept identification, they utilized logistic regres-
sion, whereas we employed a CRF for semantic tagging. In addition,
they focused on procedural text (i.e., sets of instructions), which re-
quired building a directed acyclic flow graph from recipe text; in our
work, for food-property association we directly predicted relations
using a random forest classifier.

Recent work [7, 8, 9] has shown that using word embeddings
as features in classifiers can improve natural language processing
performance in a variety of tasks, such as part-of-speech tagging in
multiple languages [10], enriching spoken queries in dialogue sys-
tems [11], and semantic tagging [12]. We investigated three ap-
proaches for incorporating word embedding features into a CRF se-
mantic tagging model: using dense embedding values directly, mea-
suring the cosine distance between tokens and “prototypes” (i.e.,
words most representative of a category, such as “bread” for foods),
and clustering vectors.

In the remainder of this paper, we begin by presenting the tech-
nical approach to the two language understanding tasks: semantic
tagging and food-property association. Section 3 summarizes the
text and speech corpora, experimental results, and system evalua-
tion. Section 4 discusses the results, and Section 5 concludes.
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2. LANGUAGE UNDERSTANDING

The language understanding component of the system is composed
of two tasks: tagging each token in a spoken meal description as
a food, brand, quantity, or description; and assigning properties to
foods. For example, in the meal shown in Figure 2, the tokens “ce-
real” and “milk” are tagged as foods, whereas “a bowl” and “two
cups” are quantities. Subsequently, “a bowl” is assigned to “cereal,”
while “two cups” is associated with “milk.”

Fig. 2. A depiction of the two language understanding tasks.

2.1. Semantic Tagging

In this section, we discuss the first language understanding task, se-
mantic tagging, where we incorporate word embeddings as features
in a CRF model. In prior work [5], we compared a semi-Markov
conditional random field (semi-CRF) to a standard CRF baseline,
with which we predicted a vector of output food and property la-
bels ~y = {y0, y1, ..., yT } corresponding to a set of input feature
vectors for each token (or segment of tokens) in a meal description
~x = { ~x0, ~x1, ..., ~xT }. The baseline features included n-grams, part-
of-speech (POS) tags, and presence in a food or brand lexicon.

According to distributional semantics theory [13, 14], words
with similar meanings have similar vector representations, so we ex-
plored using neural network-trained vectors as CRF tagging features
to account for semantics. We used three methods for incorporating
such vectors: dense embedding values, binary and raw similarity
values between tokens and prototypes [15], and clusters.

A popular method for learning word embeddings is Mikolov’s
Skip-gram model [16], released as the word2vec toolkit [17], which
learns word vector representations that best predict the context sur-
rounding a word. Given training wordsw1, w2, ..., wT , the objective
is to maximize the average log probability
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where vwI and vwO are the input and output vectors of w, and W is
the vocabulary size. In our experiments, we trained the vectors with
the continuous bag-of-words (CBOW) approach, which predicts the
current word based on the context [18].

First, we directly used vector component values as features for
each of the 300 dimensions of the pre-trained word vectors from
the Google News corpus, which has a three million word vocabu-
lary from about 100 billion words total (available on the word2vec
website1). For these experiments, we employed the CRFsuite [19]

1https://code.google.com/p/word2vec/

implementation rather than CRF++ (although performance was sim-
ilar) for two reasons: faster running time and the ability to use vector
float values directly.

In addition to using the continuous, dense embeddings as fea-
tures in our models, we explored a distributional prototype method
for discretizing the embedding features: representing each label cat-
egory with a prototype word (see Table 1) and using the similarity
between a token and prototypes as features [15]. We experimented
both with features representing the similarity between a token and
individual prototypes, as well as the average similarity between a to-
ken and all the prototypes in a category. In addition, we explored
binary features for similarities below a threshold δ tuned with cross-
validation. The similarity was calculated with cosine distance, and
the prototypes were selected through normalized pointwise mutual
information (NPMI). For each category, the NPMI was computed for
every vocabulary word. The topm words were chosen as prototypes
for each label, where m = 50 was selected via cross-validation.

Label Prototypes
Food “water,” “milk,” “sauce,” “coffee,” “tea”
Brand “Kraft,” “Trader,” “Great,” “Kroger,” “Joe’s”

Quantity “cup,” “two,” “glass,” “oz,” “one”
Description “white,” “green,” “peanut,” “black,” “whole”

Table 1. Top five prototypes for each category (except Other).

Finally, we investigated clustering as an alternative to the dis-
tributional prototype method for discretizing continuous word vec-
tors. Using word2vec’s k-means clustering algorithm (k = 500), we
added a feature for each token’s cluster.

2.2. Property Association

In the nutrition system, after the user describes his or her meal, the
language understanding component must not only identify the foods
and properties (i.e., semantic tagging), but also determine which
foods are associated with which properties (e.g., selecting “milk”
as the food which “two cups” describes, rather than the preceding
food “cereal” in Figure 2). There are two alternative approaches for
accomplishing this food-property association task: segmenting the
meal description tokens into food chunks (each with a food item and
its properties), and predicting the most likely food for each property.

As an alternative to the four segmenting methods we explored
in [5], in this work we trained a classifier for assigning properties to
foods. This approach indirectly incorporated word embeddings into
the food-property association task by using the predicted semantic
tags from the CRF trained on word vectors. We compared oracle
experiments with gold standard tags to experiments using predicted
tags, where we used the model with the best feature combination.

One drawback to using the segmenting representation is that it
assumes properties appear either directly before or after the food
with which they are associated, neglecting long-range dependencies.
For example, in the meal description “I had two eggs and cheese
from Safeway,” the brand “Safeway” should be assigned to both
“eggs” and “cheese;” however, with the segmenting scheme, it is
impossible to associate “Safeway” with “eggs” without also assign-
ing the quantity “two” to “cheese” (since all properties are applied to
all foods within a segment, and in this case there are either two sep-
arate segments for “eggs” and “cheese” or one segment for both). In
addition, converting the labeled AMT data to IOE format (i.e., I in-
dicates inside a chunk, O outside, and E the end) requires making as-
sumptions where some information (e.g., long-range dependencies)

6071



is omitted. Thus, we investigated an alternative method for food-
property association where we trained a classifier to directly predict
which food a property describes.

In our approach, given a tagged meal description, for each of the
property tokens the classifier determines with which food it is asso-
ciated. Given a property token ti, we iterate through each food token
fj in the meal description and generate features for each (ti, fj) pair.
For each pair, the classifier outputs a probability that fj is the cor-
responding food item for ti. Then, for each ti, the fj with maximal
probability is selected. Note that this does not yet allow a property
to be associated with more than one food, but we consider this a first
step and in future work will explore association of multiple foods via
a vector of probabilities rather than a single hard label.

The classification is done using six features: the property token,
whether the food token is before or after the property token, the dis-
tance between the two tokens, the property’s semantic tag, the prop-
erty’s entity type if it is a named entity, and the dependency relation
between the property and food token if the food is the property to-
ken’s head in the dependency parse tree of the meal log. We explored
three different classifiers, using the Scikit-learn toolkit’s implemen-
tation for Python [20]: a random forest (i.e., a collection of decision
tree classifiers trained on a random sample of training data), logistic
regression, and a naive Bayes classifier. We used the spaCy NLP
toolkit2 in Python for dependency parsing, tokenizing, and tagging
because it is fast and provides shape features (e.g., capitalization,
numbers, etc.) that improved performance over our manually de-
fined shape features. Performance was evaluated using precision,
recall, and F1 scores for property tokens only. In the oracle exper-
iments, since we used the gold standard semantic tags, the number
of actual property tokens equals the number of predicted property
tokens, so the precision, recall, and F1 scores are all equivalent.

3. EXPERIMENTS

In order to evaluate our semantic tagging and food-property associ-
ation models, we collected and annotated a set of text data, as well
as spoken data. To prepare the speech data, we built an in-domain
speech recognizer from audio recordings of meal descriptions, and
labeled the recognizer’s output on Amazon Mechanical Turk (AMT).
In addition, we evaluated the end-to-end system on AMT.

3.1. Text and Speech Corpus Descriptions

We evaluated our models on a data set of 10,000 textual meal de-
scriptions collected and annotated via AMT [21]. We collected and
labeled 2,000 food logs each of breakfast, lunch, dinner, and snacks.
We also launched an AMT task with the deployed nutrition system,
in which we asked 500 Turkers to record four meal descriptions,
yielding 2,000 additional meal descriptions. The data were tok-
enized on spaces, and if one of the resulting strings began or ended
with a punctuation mark, we further split the token on the punctua-
tion. The data were divided into 90% training and 10% testing.

The experiments presented in prior work [5] relied upon written,
rather than spoken, data. To address this limitation, we collected a
corpus of spoken meal descriptions, and created a nutrition speech
recognizer. We collected the speech data via AMT [22], where we
asked Turkers to record 10 meal descriptions. We split the resulting
2,962 utterances (from 37 speakers totaling 2.74 hours) into 80%
training, 10% development, and 10% test sets, and removed punc-
tuation and capitalization. Using Kaldi [23], we trained a 256 node,

2https://honnibal.github.io/spaCy/

6 layer, deep neural network (DNN) acoustic model and a trigram
language model on 40,000 written meal diaries. The decoder had a
word error rate (WER) of 7.98% on the test set. We then annotated
the semantic tags and food-property associations of the recognizer’s
output on AMT, as described in [24] for subsequent understanding
evaluation.

3.2. Semantic Tagging

As the baseline, we used n-gram features (as-is and lowercase), POS
tags [25], and presence in USDA food and brand lexicons [26]. To
improve upon the baseline, first we added dense embedding features
(row three in Table 2). Next, we incorporated distributional proto-
type similarity features (fourth row in Table 2). Since many high
scoring prototypes did not appear in the corpus, we selected the next
best prototype with a vector representation. We did not include pro-
totypes for the “None” category because this reduced performance.

Model Food Brand Num Descr None Avg
No CRF 85.7 73.6 89.3 75.7 92.6 83.4
Baseline 94.3 81.4 91.9 88.6 95.1 90.2
+Dense 94.5 81.5 91.9 88.7 95.1 90.3
+Proto 94.9 82.4 91.9 89.0 95.3 90.7
+Shape 94.9 82.8 91.7 89.1 95.1 90.7
+Cluster 95.0 82.8 91.7 89.1 95.1 90.8
+Speech 95.9 68.5 91.6 87.3 94.1 87.5

Table 2. CRFsuite F1 scores per label in the semantic tagging task
with incrementally complex feature sets: baseline n-grams, POS
tags, and lexical features; dense embeddings; raw prototype simi-
larities; shape; and clusters. For comparison, the top row predicts
tags using the most frequent tag in the training data for a token (or
“None” if unseen during training). The last row shows evaluation on
the speech test corpus for the full feature set.

We experimented with two similarity features: a binary number
indicating whether or not the similarity was below a threshold δ de-
termined through cross-validation (i.e., 0.25 for brands and 0.3 for
the other categories) and the raw value of the similarity. The raw
similarity value features improved upon the baseline combined with
raw word vector values, but the binary similarity did not yield further
improvement. This might be because the CRF is able to determine
the relative importance of each similarity feature, whereas the binary
similarity weights the different prototypes’ similarities equally.

The shape feature, which indicated whether or not the token was
in titlecase, lowercase, uppercase, a number, or a piece of punctua-
tion, improved upon the baseline and prototype features (row five in
Table 2). Finally, k-means clusters (500 classes) yielded the highest
average F1 score of 90.8; the improvement of all combined features
was significant (McNemar), relative to the baseline, where p < 0.05.
For comparison, the performance of the best semantic tagging model
on the speech corpus is shown in the last row of Table 2.

3.3. Property Association

The highest scoring association model on the text corpus is the ran-
dom forest classifier (see Table 3). As expected, the performance is
significantly better in the oracle experiments than when using pre-
dicted tags, where p < 0.01.The similar performance of the ran-
dom forest on the speech corpus indicates that using speech did not
greatly impact performance.
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Model Prec. Recall F1
Naive Bayes (Oracle) 94.6 94.6 94.6

Logistic Regression (Oracle) 95.2 95.2 95.2
Random Forest (Oracle) 96.2 96.2 96.2
Naive Bayes (Predicted) 84.1 87.3 85.7

Logistic Regression (Predicted) 84.2 87.4 85.7
Random Forest (Predicted) 84.7 87.9 86.3

Speech: Random Forest (Predicted) 82.4 89.8 86.0
Speech: Random Forest (Oracle) 98.5 98.5 98.5

Table 3. Food-property association with three classifiers, for gold
standard tags (i.e., oracle) and predicted tags. The performance on
the speech corpus is shown in the last two rows.

To compare the performance of the classification approach to
that of IOE chunking (i.e., segmentation), we added IOE labels as
additional features for both oracle and non-oracle experiments (see
Table 4). These results show that the new association approach using
a random forest classifier yields a significantly higher F1 score than
the CRF (p < 0.01), when evaluated on property tokens. For the
CRF method, the number of gold property tokens with associated
foods is greater than the number of property tokens with predicted
foods, which indicates that some properties were missed in the IOE
chunking scheme and therefore were not assigned any foods.

Model Precision Recall F1
Segmenting (Oracle) 87.9 83.9 85.9
Classifying (Oracle) 96.2 96.2 96.2
Combined (Oracle) 96.5 96.5 96.5

Segmenting (Predicted) 86.2 81.0 83.5
Classifying (Predicted) 84.7 87.9 86.3
Combined (Predicted) 84.9 88.2 86.5

Table 4. Performance on the food-property association task using
the prior approach of IOE segmenting with the CRF, the new random
forest classification method, and the union.

We also investigated whether the IOE labels from the CRF were
complementary to the food-property classification approach by in-
corporating the predicted IOE labels as new features in the random
forest classifier. As shown in the last row of both sections in Table 4,
the addition of IOE labels improved classification performance for
both oracle and non-oracle experiments. The union performed sig-
nificantly better than the CRF segmenter alone, where p < 0.01.

3.4. System Evaluation

In order to evaluate the system’s overall performance on real users,
we launched an AMT task where Turkers rated how well the sys-
tem performed on three separate tasks: semantic tagging, quantity
matching, and correctly identifying USDA (Nutrient Database for
Standard Reference)3 hits for matching foods. We asked Turkers to
record two meal descriptions each and to interact with the system by
revising the quantities and selecting a single USDA hit. The results
from 437 meal descriptions containing a total of 975 food concepts
indicated that 83% of semantic tags were correct, 78% of the quan-
tities were correct, and 71% of the USDA hits were correct matches.
There were only 34 insertions (i.e., a non-food token labeled as food)

3http://ndb.nal.usda.gov/ndb/search

and 96 substitutions (i.e., a food token labeled as non-food). The
system did not use the best models (due to difficulty porting Python
experiments to the system in Java) and thus had a lower semantic
tagging performance of 83.5 on the spoken test data, as well as a
food-property association performance of 83.4 on spoken data.

4. DISCUSSION

We measured the reliability of the textual data annotations by cal-
culating the inter-annotator agreement among Turkers. The kappa
score [27] for the food labeling task is 0.77, which indicates sub-
stantial agreement, whereas the kappa score for the property label-
ing task is 0.41. The property labeling task was more challenging,
since there were three possible categories instead of one; in addition,
distinguishing between brands and descriptions was difficult.

For the semantic tagging experiments, we explored training vec-
tors on the Google News corpus, as well as on domain-specific nu-
trition data; however, the vectors trained on Google News performed
best because the data is much larger than the nutrition data set. In
the future, we may expand the nutrition data for training domain-
specific vectors by extracting recipes from the web. When selecting
the best word vector features for tagging, we also found that using a
unique feature for each prototype’s similarity, as opposed to averag-
ing all the similarities, improved performance. This could be due to
differences in meaning among the prototypes within a category. For
example, drinks such as “juice” are considered foods, as is “bread;”
however, “tea” might be similar to “juice,” but not to “bread.”

The average semantic tagging F1 test score on spoken data
(87.5) is somewhat lower than the best score displayed in Table 2 on
text data (90.8), which is probably due to the difference in test data
size (1,000 vs. 251 diaries); the association performance is not as af-
fected by the use of speech data. The low performance on semantic
tagging of brands is likely due to the small number of brand tokens
(i.e., only 3.4% of the test data’s tokens are brands), as well as the
difficulty distinguishing between brands and descriptions. In the fu-
ture, we may merge the brand and description categories, since they
ultimately serve the same purpose in the nutrition database lookup.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we explored three approaches for incorporating word
embedding features into CRFs for the semantic tagging task of a nu-
trition system. The best feature set consisted of baseline, shape, and
cluster features combined with raw word embedding values and co-
sine similarity scores to prototype vectors, yielding an average F1
score of 90.8. For the food-property association task, we investi-
gated applying classifiers to directly predict the food that a property
describes; the random forest classifier achieved an F1 score of 86.3
with predicted tags. We evaluated the models on spoken data from a
nutrition speech recognizer. Finally, when we evaluated the system
prototype in a user study, semantic tagging was 83% accurate.

In the future, we plan to explore multiple-sense embed-
dings [28], since many words have several meanings, and use let-
ter trigram vectors [29] to handle unknown words. Finally, we plan
to investigate the use of recurrent neural networks (RNNs) [30, 31],
recurrent CRFs [32], long short-term memory (LSTM) [33], or re-
cursive NNs [34, 35, 36] as alternatives to the CRF.
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