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ABSTRACT

This paper describes the development of a stateless spoken spo-
ken language understanding (SLU) module based on artificial neural
networks that is able to deal with the uncertainty of the automatic
speech recognition (ASR) output. The work builds upon the con-
cept of weighted neurons introduced by the authors previously and
presents a generalized weighting term for such a neuron. The effect
of different forms and parameter estimation methods of the weight-
ing term is experimentally evaluated on the multi-task training cor-
pus, created by merging two different semantically annotated cor-
pora. The robustness of the best performing weighting schemes is
then demonstrated by experiments involving hybrid word-semantic
(WSE) lattices and also limited data scenario.

Index Terms— spoken language understanding, convolutional
neural networks, word-semantic lattices

1. INTRODUCTION

The processing of an ASR output described in this paper is based
on the use of convolutional neural networks (CNNs) for text classi-
fication [1] which use techniques known from image processing for
problems of text processing. The input text can be treated as an 1D
variable-size image with |V| parallel channels (V' being the vocab-
ulary of the task) that is split into regions by a convolutional layer
and the information contained in its output is reduced by a pooling
layer to represent more abstract concepts. The output of the pooling
layer is then fed to fully connected layers. Modifications to this tech-
nique using weighted neuron in convolutional layer presented in [2]
and bag-of-words feature vectors allow us to exploit the additional
information present in the ASR lattices.

The nature of SLU requires dealing with the erroneous and un-
certain output of an ASR. The simplest approach is to use the 1-best
recognition hypothesis and treat it as a text document processed in
the CNN described above. However, exploiting n-best hypotheses
(lattices) from ASR improves the SLU performance [3, 4].

The work presented in this paper first explored the possibility of
training a single SLU module using multiple training corpora that
were originally developed for different domains. The multi-task
training approach is usually used to increase the number of train-
ing examples and to improve the generalization capabilities of the
model (e.g. in a reasoning task [5] or in a speech recognition [6]).

The second part of this paper discusses different weighting
schemes for incorporation of posterior probabilities into the CNN-
framework. This approach is novel, because it uses parts of the input
ASR lattice longer than one word and associated posterior proba-
bility. Other works on SLU typically use word confusion networks
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[3, 7, 4]. The proposed CNN scheme is not limited to a stateless
SLU, but it could be used as a feature extractor in a recurrent neural
network (RNN) SLU model [8].

The last set of experiments applies the multi-task training and
weighting scheme to a new type of input data consisting of word-
semantic (WSE) lattices. The WSE lattices were introduced in [9].
It allows to incorporate the expert knowledge into the SLU process
by replacing well-known entities in the input lattice with a semantic
tags described by a human-made grammar. The approach is similar
to a LUNA framework [10] or to the use of finite-state transducers to
detect local meanings [11, 12]. The only difference is that it operates
on the ASR lattice and produces the WSE lattice, which allows to use
the same SLU model for ASR and for WSE lattices.

The rest of the paper is organized as follows: Sec. 2 gives a brief
overview of CNNs for spoken language understanding, deals with
the multi-task training and discuss the choice of weighting term, Sec.
3 shows the experimental results and Sec. 4 concludes the paper.

2. CNN FOR SPOKEN LANGUAGE UNDERSTANDING

In this section we shortly describe our method for incorporation of
the information from ASR word lattice into an SLU pipeline based
on convolutional neural networks. The CNN framework has the abil-
ity to encode variable-length input into a fixed-length feature-vector
using the pooling operator. The fixed-length feature-vector is then
processed in the fully-connected layers. The convolutional layer em-
ploys a convolutional region — the sliding window which is used to
compute the region feature-vector. The number of region feature-
vectors is variable and dependent on the length of the input. The
CNN framework allows to estimate the parameters of the convolu-
tional layer using standard backpropagation algorithms.

Because the word lattice encodes multiple ASR hypotheses and
the corresponding posterior probabilities, it basically contains two
types of information: (1) the lexical information contained in the
words of the hypothesis and (2) the posterior probabilities of the
given hypothesis. While the lexical information could be processed
in the text-based CNN framework [1], the posterior probabilities
would have to be properly modelled in an input layer of the net-
work to appropriately weight the alternative hypotheses. The idea
of the CNN framework processing the ASR lattices extends the con-
cept of the sliding window, it moves in two dimensions: along the
time axis catching the word-order information, and along the depth
of the n-best ASR hypotheses. All obtained region feature-vectors
are processed into a single pool using some standard pooling opera-
tor (max-pooling, sum-pooling, etc.)

In this work we use the ASR lattices preprocessed in a similar
way as in [13]. Using operations defined over weighted finite state
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Fig. 1: (a) The input lattice. (b) Region vectors (r;) and soft-counts
(p1) for all subpaths (indexed by [) of the lattice. The bag-of-words
representation of region vectors is used. The auxiliary elements of
the region vector p1 and p2 are paddings ensuring that the shorter
subpaths have the same number of ones as the longer ones.
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Fig. 2: Schema of a weighted neuron consisting of two non-
linearities and multiplication. Note that the vector transposition sym-
bols are omitted for clarity.

transducers the posterior probabilities of any subpath of the lattice
can be easily computed [14]. In addition, we do not use the posterior
probabilities directly. We sum the probabilities of the same regions
forming so-called soft-counts.

Based on the results in [1] and with respect to the number of
training examples and the average length of utterances in training
data, we used the bag-of-words representation of region vectors
(bow-CNN) and just one max-pooling unit. This configuration is
suitable for small training sets and shorter utterances.

The input ASR lattices have a form of weighted finite state ac-
ceptors satisfying the assumption that the sum of probabilities of all
paths is 1. According to this assumption the posterior probability of
any subpath of the lattice could be computed. In our CNN architec-
ture, we chose the subpaths of a maximum length of p words as the
regions in the convolutional layer. Each region vector r; is weighted
by a corresponding sum of posterior probability (soft-count) p;. The
use of the pooling implies the order of r;-vectors is irrelevant.

We use padding elements b; ensuring that the number of ones in
the r-vector is the same for all regions (see Fig. 1). The padding
elements allow the network to distinguish between regions of differ-
ent lengths. The padding elements could be understood as additional
bias term in the convolutional layer of the network.

In [2], the authors introduced the weighted neuron. The
weighted neuron is a convolutional layer neuron used to indepen-
dently process the lexical information in the region vector r; and the
soft-count of the region vector p;. The output of the j-th neuron for
l-th region is defined as the multiplication of the standard neuron
output and the weighting term:

yji = o(wj -1y +by) x f(pi; i, B;) )

where w;, b;, o; and 3; are weighting parameters shared between
all convolutional units, o(+) is a non-linearity of the convolutional

unit and f(+) is a weighting function with parameters «;; and 3;.
The max-pool output z; is then simply the element-wise maxi-
mum of the convolutional neurons outputs:

zj = mlax Yjt 2)

The fixed-length vector of max-pool output z is then processed
in the fully connected layers of the neural network. The parameters
w;, bj, aj and B; are trainable using standard NN training algo-
rithms.

The CNN framework could be used in many classification tasks.
In [2] we used it for spoken language understanding. We used the
Hierarchical Discriminative Model (HDM) [15], which was initially
designed to be used with support vector machines, and we replaced
the classification part with the CNN-based model. The HDM gener-
ates a semantic tree consisting of semantic concepts. Each semantic
concept in the tree is expanded into a given set of successor con-
cepts. The set of possible expansions is extracted from the training
data and the expansion probabilities are predicted by the multiple-
output classifier. The resulting semantic tree is the most probable
semantic tree given the semantic grammar and predicted probabil-
ities. In the CNN-based HDM, we used multiple soft-max output
neurons with categorical cross-entropy as a training criterion.

The first experiment of this paper uses a multi-task training of
CNN-based HDM. The experiment employing multiple semantic do-
mains shows how well the HDM scales to larger tasks. In this work,
we merged two semantically annotated corpora, virtually doubling
the size of the task (see Tab. 1) in the number of different semantic
concepts and the number of possible semantic trees.

To merge two different semantic corpora, we extended the first
step of the HDM training algorithm — the collection of semantic con-
cepts and their possible expansions. In our case it involves the uni-
fication of some concepts between the two semantically annotated
corpora (Sec. 3). The HDM training process remains the same, the
only difference is a larger number of output soft-max neurons.

2.1. Weighting term {(p; o, 3)

As we have shown in [2], the choice of the weighting scheme for the
posterior probabilities is crucial for a good SLU performance. The
non-linear multiplication term used in the weighted neuron achieves
better results than the simple extension of the region feature vector
with the posterior probability. In this subsection, we will further
study the influence of the weighting term on the SLU performance.

Since the weighting term is an integral part of the weighting
neuron, its parameters could be estimated during the training process
of the CNN. In this subsection, we will examine the form of the
weighting term, the number of its parameters and the initial values
of such parameters.

The weighting term maps the soft-counts of the region feature
vectors to a multiplicative weight used to calibrate the output of con-
volutional neuron. The weighting term maps an interval [0, +00)
to a weight used to prioritize ASR hypotheses below the first best
hypothesis. In this paper, we experimented with two forms of the
weighting term: (a) linear and (b) logistic sigmoid. To unify the
parametrization of the weighting term, we defined the weighting
function f(p) using its value o = f(0) and its derivation 3 = '(0)
for p = 0. The linear weighting term is a simple linear form:

f(p;o, B) =B -p+a )
The logistic sigmoid is then parametrized as:

2

f(p;0, f) = tanh(B - p) +a = =555

—14+a @)
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The values of parameters «, 3 could be fixed, shared for all con-
volutional neurons or specific for each convolutional neuron. In the
experiments below, we will denote it as fixed, shared and specific.
The scenario with linear weighting term and fixed values a = 0,
B = 1is equal to directly weighting the region feature vector r; with
the posterior probability p; assuming the ReLU activation function
and omitting the bias term in the j-th convolutional neuron output.
In the shared scenario, all convolutional neurons share the same pa-
rameters, i.e. a; = a and §; = (.

In the case of shared and specific scenarios, the gradient of the
CNN cost function was derived and optimized using the Theano li-
brary [16]. The updates of the o and 3 parameters and CNN param-
eters were performed jointly.

3. EXPERIMENTAL EVALUATION

In the experiments we use the similar experimental setup as in [2].
The convolutional neural networks used in the experiments have the
following architecture: Convolutional layer (1000 neurons); Pool-
ing layer (1 max-pooling unit, ReLU, 1000 neurons); Dropout layer
(probability 0.2); Hidden layer (ReLU, 1000 neurons); Dropout
layer; Hidden layer (ReLU, 1000 neurons); Dropout layer; Hid-
den layer (sigmoid function, 1000 neurons); Dropout layer; Soft-
max layer (1 softmax unit per each semantic concept). We also use
the bag-of-words region to reduce the number of trainable param-
eters and the training data augmentation with the human transcrip-
tions without the ASR errors as described in [2]. To train the CNN
network we used the ADAM [17] algorithm and early stopping ap-
proach implemented in Lasagne [18].

In the experiments we use two Czech semantically annotated
corpora: a Human-Human Train Timetable (HHTT) corpus [19]
which contains inquiries and answers about train connections; and
an Intelligent Telephone Assistant (TIA) corpus containing utter-
ances about meeting planning, corporate resources sharing and con-
ference call management. These corpora contain unaligned semantic
trees together with word-level transcriptions. We have split the cor-
pora into train, development and test data sets (72:8:20) at the dialog
level, so that the speakers do not overlap. To perform the multi-task
training experiment, we had to unify some semantic concepts. In the
HHTT corpus all time and date information was annotated as TIME.
On the opposite site the TIA corpus contained more granular anno-
tation of dates and times include concepts like TIME, INTERVAL,
RELATIVE-DATE etc. To avoid re-annotation of the first corpus, we
have merged all time- and date-related concepts into a TIME concept.
We have also unified the concepts for agreement and disagreement,
so that the resulting corpus contains ACCEPT and REJECT concepts.

To evaluate the SLU performance we use the concept accuracy
measure [15] defined as cAcc = % = H=I where H is
the number of correctly recognized concepts, /N is the number of
concepts in reference and S, D, I are the numbers of substituted,
deleted and inserted concepts. Our in-house LVCSR decoder with
trigram language model trained from the in-domain data has been
used to obtain the word lattices [20]. The recognition accuracy and
other characteristics of both corpora are summarized in Tab. 1.

First of all, we train the CNN for the HHTT and TIA data sepa-
rately. The results are shown in Tab. 2, rows HHTT and TIA. These
models use the simple identity weighting term f(p) = p. The union
of these results (row HHTT+TIA) is a weighted average of partic-
ular results of two specialized models, the weights are the numbers
of concepts in the corresponding set (see N in the cAcc formula
above). Then we train the multi-task model on the union of HHTT
and TIA (row HHTT+TIA multi-task). The resulting model achieves

HHTT TIA  multi-task
# different concepts 28 19 46
# different trees (train) 380 253 630
# train sentences 5240 6425 11665
# train concepts 8967 13499 22466
# dev. sentences 570 519 1089
# dev. concepts 989 1106 2095
# test sentences 1439 1256 2695
# test concepts 2546 2833 5379
ASR Acc 75.0%  77.9% -
Vocabulary size 7143 4843 10469

Table 1: Corpora characteristics.

virtually the same performance as the union of two models employ-
ing the prior information about the target domain. The same result
can be achieved for other forms of the weighting term. In this work,
we use this observation to train a single model on a larger corpus.
This also allows us to evaluate the different weighting schemes on a
single corpus.

data dev. cAcc  test cAcc
HHTT 71.89 71.76
TIA 77.94 84.22
HHTT+TIA 75.08 78.32
HHTT+TIA multi-task 74.08 78.40

Table 2: Single-task and multi-task training.

In the second set of experiments, we examine the influence of
the weighting term. We use the multi-task data to create a larger
dataset to evaluate the differences and we have tested two forms of
weighting term — linear and sigmoid — in three setups — fixed, shared
and specific. For each setup, we have performed experiments with
a={£(0) € {0,1} and 8 = {'(0) € {0.5,1,2}. The results on the
development set of the multi-task corpus are shown in Tab. 3.

For each setup, we select the best performing weighting func-
tion and parameters (bold values in Tab. 3). These values were
subsequently used to evaluate the model on the multi-task test set.
Although the differences in the results are small, we can observe
some regularities.

The results for weighting with non-zero offset (o« = 1) are better
than the results for weighting term crossing the origin (in 12 cases of
18 total). The reason is probably that in order to effectively train the
convolutional layer for regions with small soft-counts, it is neces-
sary to assign them the non-zero weight to prevent the gradient from
vanishing.

The average values of concept accuracy for a given weighting
term and a given setup (last column of Tab. 3) suggests that the
sigmoidal weighting performs better than the linear weighting. The
average values also show that the ordering of setups from worse to
the best is fixed — specific — shared.

The preference of the sigmoidal weighting is caused by the fact
that we use the soft-counts of region feature vectors and such values
could be greater than 1. The histogram shows a second maximum
at soft-count 2. The preference of sigmoidal weighting suggests that
the region with soft-count 2 is not twice important as a region with
soft-count 1.

Almost all experiments outperform the baseline fixed identity
weighting f(p) = p, i.e. the linear weighting term in the fixed setup
and @ = 0 and 8 = 1. It shows the importance of the choice of
weighting function and its parameters. The values of weighting pa-
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dev. cAcc [%)

f(p) B a=0 a=1 avgcAcc|[%]

linear (fixed) S5 7456 76.04
1 7437 7532 74.81

2 7432 7422

sigmoid (fixed) S5 7513 75.80
1 7518 7547 75.53

2 7599 75.61

linear (specific) S5 7461 7537
1 7408 74.80 74.74

2 7480 74.75

sigmoid (specific) .5  74.89 75.66
1 7580 76.04 75.61

2 7594 7532

linear (shared) S5 75.61 75.23
1 74.99 75.24 75.33

2 7523 7570

sigmoid (shared) .5 7532  76.23
1 75.94 75.89 75.73

2 7532 7570

Table 3: Results for different weighting scenarios. The parameter
a denotes the offset of the weighting function (f(0) = «), and the
parameter 3 the derivation (f(0) = ). For scenarios with trainable
parameters (specific and shared), these parameters are initialization
values.

rameters could be determined by cross-validation (fixed setup) or by
estimation during the CNN training process (shared and specific se-
tups).

The selected weighting parameters for each weighting setup
have been evaluated on the multi-task test data. We have also used
the word-semantic (WSE) lattices from [9] as an additional type of
input data. The WSE lattices have been created from ASR lattices
by replacing the semantic entities (such as lexical realizations of
times and dates) with semantic tags. We have modelled the seman-
tic entities using the human-defined context-free grammars of the
following types: station, time, date, train_type, person_name and
resource_name. The occurrences of semantic entities in the ASR lat-
tice have been replaced using the split derivation. The resulting WSE
lattice contains the mix of words and semantic tags corresponding to
the semantic entity, for more details see [9].

The evaluation on WSE lattices should demonstrate the robust-
ness of a given weighting scheme — the parameters (or initial values
for training) should be usable for another tasks. We have also exper-
imented with a limited data scenario — in this case we randomly took
10% of the multi-task training data and we have trained the CNN
SLU model. The model was evaluated on the full development and
test data of multi-task corpus. The baseline for each case is the fixed
identity weighting term f(p) = p.

The experiments are summarized in Tab. 4 and Tab. 5. The
results based on word lattices show that all three selected weight-
ing schemes outperform the baseline fixed identity weighting (the
p-value smaller than 2.2 - 10™%). On the WSE level, the fixed iden-
tity weighting is outperformed also by all three weighting schemes,
but the difference is statistically significant just for the sigmoid (spe-
cific) case (p-value 0.038). For the limited training data scenario,
we observe that the differences between baseline weighting and the
three selected weighting schemes are larger and all differences are
statistically significant (p-value smaller than 3.2 - 10~ 7).

The incorporation of WSE lattices into the training process of

data weighting schema  dev. cAcc  test cAcc
words linear f(p) = p 74.08 78.40
words linear (fixed) 76.04 80.24
words  sigmoid (specific) 76.04 80.05
words  sigmoid (shared) 76.23 79.53
WSE  linear f(p) =p 75.12 80.50
WSE  linear (fixed) 75.66 81.06
WSE  sigmoid (specific) 75.23 81.32
WSE sigmoid (shared) 75.70 80.94
Table 4: Full data scenario
data weighting schema  dev. cAcc  test cAcc
words  linear f(p) = p 61.24 67.24
words linear (fixed) 64.34 70.66
words  sigmoid (specific) 64.53 70.91
words  sigmoid (shared) 64.53 70.70
WSE  linear f(p) =p 63.39 70.63
WSE  linear (fixed) 66.35 73.14
WSE  sigmoid (specific) 65.97 73.17
WSE sigmoid (shared) 66.54 73.14

Table 5: Limited data scenario

CNN SLU model significantly improves the SLU performance. The
improvement from word lattices (cAcc = 80.24%) to WSE lattices
(cAcc = 81.32%) is statistically significant with p-value 0.013. The
improvement in the parsing accuracy is larger in the limited training
data scenario — from 70.91% (word lattices) to 73.17% (WSE lat-
tices) with p-value 3.0 - 10~°.

4. CONCLUSION

We trained the multi-task CNN SLU model for two different seman-
tic corpora. The multi-task model yielded the same accuracy as two
partial models with the prior information about the target domain.
Then, we studied different weighting schemes for weighting region
soft-counts obtained from the lattice. The parameters of the weight-
ing scheme could be fixed and determined using cross-validation.
Another option is to estimate the weighting parameters as a part
of the training process. In both cases, the results outperformed the
baseline method, which multiplies the convolutional neuron output
with the soft-count of the given region. We did not find any statis-
tically significant difference between the three suggested weighting
schemes.

We tested the suggested weighting schemes using word lattices
in the multi-task scenario. In addition, we performed experiments
with limited training data scenario. In both scenarios, we used also
the word-semantic lattices. The results show that the suggested
weighting schemes are robust and could be used for word and word-
semantic lattices.

The word-semantic lattices proved to be useful also in the CNN-
based SLU model and significantly improve the performance. The
improvement is larger in the limited training data scenario, because
the expert knowledge incorporated in the WSE lattices allows to bet-
ter model rich and variable semantic entities such as times and dates.
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