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ABSTRACT

This paper presents our latest investigation of recurrent neu-
ral networks for the slot filling task of spoken language un-
derstanding. We implement a bi-directional Elman-type re-
current neural network which takes the information not only
from the past but also from the future context to predict the se-
mantic label of the target word. Furthermore, we propose to
use ranking loss function to train the model. This improves
the performance over the cross entropy loss function. On
the ATIS benchmark data set, we achieve a new state-of-the-
art result of 95.56% F1-score without using any additional
knowledge or data sources.

Index Terms— Recurrent neural network, ranking loss,
spoken language understanding

1. INTRODUCTION

One of the main tasks of spoken language understanding
(SLU) is to assign a semantic concept to each word in a sen-
tence. This is known as slot filling in the speech community.
For example, in the sentence ’I want to fly from Munich to
Rome’, an SLU system should tag "Munich’ as the departure
city of a trip and ’'Rome’ as the arrival city. All the other
words, which do not correspond to real slots, are then tagged
with an artificial class O. Even after many years of research,
the slot filling task along with the intent determination task
of SLU are still challenging problems [1, 2]. The main tradi-
tional approaches to solving the slot filling task in SLU used
generative models, such as hidden markov models (HMM)
[3], or discriminative models, such as conditional random
fields (CRF) [4, 5]. More recently, neural network models
such as recurrent neural networks (RNNs) and convolution
neural networks (CNNs) have been applied successfully to
this task [17, 18, 19, 20, 21]. This research will focus on the
use of RNNS.

RNNs have demonstrated to be successful in many nat-
ural language processing tasks, such as language modeling,
language understanding and machine translation. A simple
RNN consists of an input layer, a recurrent hidden layer, and
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an output layer. The input layer reads each word and the out-
put layer produces probabilities for the target labels. These
can be words for language modeling and machine translation
or semantic labels for the slot filling task. The network can be
trained with backpropagation through time and therefore can
save information from the input words of several time steps
to make the prediction for the current word.

In this paper, we apply a bi-directional Elman-type recur-
rent neural network to the slot filling task. For each input
word, the network takes the information not only from the
previous words but also from the future words to predict the
target slot. Furthermore instead of using cross entropy loss
to train the model, we propose to use a ranking loss function.
One benefit of this is that it does not force the model to learn
a pattern for the artificial class O (which might not exist). Fi-
nally, we evaluate the model on the ATIS benchmark data set
and show that our model outperforms state-of-the-art results
without using any additional knowledge or data sources.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an overview of related works. We describe the
uni- and bi-directional RNN architectures in Section 3. Sec-
tion 4 presents the ranking loss function which is used to train
the network. In Section 5, we show the experimental results
with a detailed analysis and comparison with state-of-the-art
results. Section 6 summarizes the work and gives possible
future work.

2. RELATED WORKS

Based on the success of deep learning in speech recogni-
tion [6, 7], this technique has also been applied to intent
determination or semantic utterance classification tasks of
SLU [8, 9]. Moreover, it has been successfully applied to a
number of other human language technology areas including
language modeling [10, 11], especially using the recurrent
neural networks [12] (with one-hot input encoding).

Another important advance is the invention of word em-
beddings [13, 14], a projecting of high-dimensional, sparse
vectors for word representations into a low-dimensional,
dense vector representation for several natural language tasks
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[15, 16]. Following this, we use word embeddings as input
representation in this work.

Techniques such as recurrent neural networks [17, 18],
convolutional neural networks [19] or long short term mem-
ory recurrent neural networks [20] have proved to improve
the results on the slot filling task of spoken language under-
standing over traditional approaches. More recently, recurrent
neural networks with external memory models [21] were pro-
posed to extend the memory of a simple RNN. In contrast,
we revisit the use of past and future context in a bi-directional
Elman recurrent neural network [22] for this task. Further-
more, we use a ranking loss function instead of cross entropy
to train the model.

3. RECURRENT NEURAL NETWORKS FOR SLOT
FILLING

3.1. RNN inputs

As input for the RNN, we use word embeddings which are
randomly initialized and jointly trained with the network. Ini-
tial experiments showed that concatenating embeddings of tri-
grams instead of using single words leads to superior results.
Hence at time-step ¢, we do not only give the embedding of
word w, to the model but the concatenated embeddings of the
trigram w;_1w,we41. In the following figures, however, we
depict a standard RNN input (single words) to avoid distrac-
tions from the focus of the pictures which is the directionality
and not the input of the models.

3.2. Uni-directional RNNs

With uni-directional RNNs, the hidden representation is com-
puted by processing the input word by word and predicting
the slot for each word. Thus, history h, at time-step ¢ is com-
puted conditioned on the information of the preceding words
(stored in the preceding history h;_1):

hi =f(U-we+V - heq) (D

As the non-linear function f, we use sigmoid throughout all
our experiments. Figure 1 shows the uni-directional RNN ar-
chitecture.

3.3. Bi-directional RNNs

Especially for slot filling, the processing of the slot argu-
ments might be easier with knowledge of the succeeding
words. Therefore in bi-directional RNNs, not only the previ-
ous history of word w; is regarded but also the future history.
Figure 2 shows this in which Uj and U} are shared and then
denoted with U in the equations 2 and 3. Thus, the network
can be split into three parts: a forward pass which processes
the original sentence word by word; a backward pass which
processes the reversed sentence word by word; and a com-
bination of both. All three parts are trained jointly. The

Fig. 2. Bi-directional RNN for relation classification

combination can be done by adding the forward and the back-
ward hidden layer. This leads to the following hidden layer
output at time step ¢:

ht:f<U'wt+%'hbt+1+Vf'hft—1) (2

Another option for combination is to concatenate the forward
and the backward hidden layer.

hy = [f(th +‘/f : hft—l)vf(U'wt + V- h’bt-f—l)} 3

The combined hidden layer output is then used to predict the
semantic label for the current word.

4. LEARNING OBJECTIVE FUNCTIONS

4.1. Cross entropy

Most approaches use a logistic regression classifier with the
softmax activation function in the final layer. The objective
function which is mainly used in this case is based on cross
entropy:

L= y.-log(se(x)c) )
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In this equation, c iterates over all classes, y. is the correct
value for class ¢ and sy (z). is the score the network assigned
to class c given the current data point x.

4.2. Ranking

Instead of using the sofmax activation function, we train a
matrix 1455 whose columns contain vector representation
of the different classes. Therefore, the score for each class ¢
can be computed by using the product

Se(x)c — htz [WClass}C (5)

We use a ranking loss function to train the RNN. It learns
to maximize the distance between the true label y* and the
best competitive label ¢~ given a data point . The objective
function is

L =log(1 +exp(y(m™ — sp(),+)))

6

Hlog(l+exp(r(m™ + 50(@) )
with s¢(2),+ and s¢(z).- being the scores for the classes
yT and ¢~ respectively. This function was proposed by Dos
Santos et al. [23] to train convolution neural networks for
relation classification. The parameter ~y controls the penaliza-
tion of the prediction errors and m™ and m ™~ are margins for
the correct and incorrect classes. 7y, m™ and m™ are hyper-
parameters which can be tuned on the development set. For
the class O, we only calculate the second summand of equa-
tion 6. By doing this, we do not learn a pattern for class O but
nevertheless increase its difference to the best competitive la-
bel. During testing, the model will predict class O if the score
for all the other classes is lower than 0.

One of the advantages of this loss function over the soft-
max function is efficiency. Since only two classes are com-
puted at every training iteration, the network can be trained
quite fast even with a large number of classes. Furthermore,
a ranking loss function is suitable for tasks like slot filling be-
cause it does not force the network to learn a pattern for the O
class which in fact may not exist.

5. EXPERIMENTAL RESULTS

5.1. Data

To compare with previously studied methods, we report re-
sults on the widely used ATIS dataset [24, 25]. This dataset
is on the air travel domain, and consists of audio recordings
of people making travel reservations. All the words are la-
beled with a semantic label in a BIO format (B: begin, I:
inside, O: outside). For example, 'New York’ contains two
words 'New’ and *York™ and therefore can be tagged with *B-
fromloc.city_name’ and I-fromloc.city_name’ respectively.
Words which does not have semantic labels are tagged with
0. In total, the number of semantic labels is 127, including

the label of the class O. The training data consists of 4,978
sentences and 56,590 words. Test data contains 893 sentences
and 9,198 words. To evaluate our models, we used the script
provided in the text chunking CoNLL shared task 2000' as
other related works.

5.2. Model training

We used the Theano library [26] to implement the model. To
train the model, stochastic gradient descent (SGD) was ap-
plied. The following table shows the hyper-parameters which
we used for all the RNN models.

Parameters Value
activation function | sigmoid
regularization L2
L2 weight le-7
mini batch size 1
initial learning rate 0.02
hidden layer size 100

For tuning the hyper-parameters, we performed a 5-fold
cross-validation. The training starts with the initial learning
rate in the first ten epochs. Afterwards, we halved the learning
rate and finished the training after 25 epochs. We also exper-
imented with more advanced techniques like AdaGrad [27]
and AdaDelta [28] but did not achieve improvements over
SGD with the described simple learning rate schedule. Since
the learning schedule does not need a cross-validation set, we
train the final best model with all the training data.

5.3. Results
5.3.1. Uni- vs. bi-directional

In the first experiment, we compare the uni-directional and bi-
directional RNN trained with the cross-entropy loss function.
Since the information of the future words can be used to pre-
dict the semantic label of the target word, we also report the
F1-score by using only the backward pass. The results listed
at the top of Table 1 reveal that the bi-directional RNN out-
performs the uni-directional one. Interestingly, the result of
a uni-directional RNN with backward pass is not so different
from the uni-directional RNN with forward pass. This shows
that the information of the future words is also important to
predict the semantic label of the target word. Combining
(by addition and concatenation) the hidden layers of forward
and backward pass in a bi-directional RNN structure provides
consistent improvements over the uni-directional RNN. Using
addition is, however, more accurate than using concatenation.
It provides the best performance with a F1-score of 94.92%.

Uhttp://www.cnts.ua.ac.be/conl12000/chunking/
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Methods Fl1-score
Uni-directional RNN w. forward pass 94.11
Uni-directional RNN w. backward pass 93.78
Bi-directional RNN (add) 94.92
Bi-directional RNN (concat) 94.85
Bi-directional RNN (add) with ranking loss 95.47
Bi-directional RNN (concat) with ranking loss 95.40

Table 1. top: uni- vs. bi-directional RNN
with cross-entropy loss function, bottom: ranking loss

5.3.2. Effect of objective function

Instead of applying a softmax layer and training the network
with the cross entropy loss function, we used the ranking loss
function described in Section 4. The hyper-parameters of the
ranking loss function are optimized with a 5-fold cross vali-
dation. The best parameters are: v = 2,m* = 3, m~ = 0.5.
We obtain a Fl-score of 95.47% on the ATIS test set which
corresponds to 0.55% absolute improvement compared to the
cross entropy loss function (see bottom part of Table 1).

To have a better understanding of the effect of omitting
the second term in the objective function 6 for the artificial
class ’O’, we also trained a model using both terms. This
variation of the objective function can be interpreted as cross
entropy loss function with a negative sample of size one. The
F1-score drops to 94.85% which is quite close to the results
of the model using softmax layer trained with cross entropy
loss. This result indicates that it is important to not force the
model to learn a pattern for class *O’.

To provide some insight information how the parame-
ters of the ranking loss function effect the final Fl-score,
we present the effect of different positive margins m™ (see
Table 2) and different scaling factors -y (see Table 3) on the
results. In both experiments, m™ is fixed to 0.5.

Positive margin ‘ 2 ‘ 2.5 ‘ 3 ‘ 35 ‘ 4

Fl-score 795.05 | 95.14 | 95.47 | 95.08 | 94.89

Table 2. F1-scores with different positive margins

Table 2 shows that the variance of the results is quite small
when the positive margin ranges from 2 to 4. The best perfor-
mance is observed for m™ = 3.

Scaling factor | 1| 15| 2| 25| 3
Fl-score | 95.04 | 95.15 | 95.47 | 9517 | 95.11

Table 3. F1-scores with different scaling factors

The results in Table 3 reveal the same trend as the results
in Table 2: The F1-score is improved by increasing the scaling
factor up to 2 and decreased afterwards.

5.4. Comparisons with state-of-the-art

Table 4 lists several previous results on the ATIS data set
including our best results. The previous best result was
achieved using LSTM and recently improved by using recur-
rent neural networks with memory [21]. The results in Table
4 show that our bi-directional ranking RNN (R-biRNN) out-
performs the previous best models. Finally, we trained five
different models with different random initializations of pa-
rameters and combined them with a voting process. In case
of a tie, we picked one of the most frequent classes randomly.
The combination achieves an F1 score of 95.56 which is the
new state-of-the-art result on this benchmark dataset. Note
that we did not use any additional (linguistic) features or data
sources.

Methods F1-score
CRF [18] 92.94
simple RNN [17] 94.11
CNN [19] 94.35
LSTM [20] 94.85
RNN-EM [21] 95.25
biRNN 94.92
R-biRNN 95.47
5xR-biRNN 95.56

Table 4. F1 score(%) on ATIS data

6. CONCLUSIONS

In this paper, we presented a bi-directional Elman-type recur-
rent neural network for the slot filling task of spoken language
understanding. This network takes the information not only
from past but also from future contexts to predict the semantic
label of the target word. The results revealed that integrating
future information is important for this task. Furthermore, us-
ing a ranking loss function to train the model improved the
performance over the cross entropy loss function. On the
ATIS spoken language understanding task, we achieved new
state-of-the-art results with 95.56% macro F1-score without
using any additional features or data sources.

One possible future work is to extend the ranking loss
function to include not only one negative sample but also the
top k closest negative samples during training.
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