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ABSTRACT

The point process model (PPM) for keyword search (KWS) is a
whole-word parametric approach that characterizes each query type
by the timing of phonetic events observed during its production. In
this paper, we first extend the PPM modeling framework to operate
on context-dependent phonetic event patterns instead of monophone
patterns considered in the past, which provides significant KWS im-
provements. Second, we use the context-dependent PPMs to drive
a detection-based speech recognition architecture thats runs parallel
word detectors covering the whole vocabulary and uses the indepen-
dent detections to construct lattices that can be used for both KWS
indexing and LVCSR decoding. This strategy produces significant
improvements over the original PPM KWS framework and provides
an encouraging first attempt at PPM-based LVCSR.

Index Terms— point process model, keyword search, speech
recognition

1. INTRODUCTION

Originally proposed in [1], the point process model (PPM) for key-
word search (KWS) is a parametric approach that assumes observed
phonetic events derived from the input speech signal are generated
by underlying keyword-specific Poisson processes [1]. A series of
past efforts have been focused to improve the model estimation and
search algorithms [2, 3, 4], leading to recent demonstration of state-
of-the-art standalone phonetic search performance in both high- and
low-resource settings with substantial complementarity with high-
performance LVCSR-based systems [5, 6, 7].

However, the past comprehensive benchmark evaluations have
been limited to building the PPM search index and parametric
models on monophone event patterns without considering the
cross-phone context, in contrast to common practices employed
by context-dependent (triphone) HMM-based automatic speech
recognition (ASR) systems [8]. [9] is the only related work of using
acoustic event patterns beyond monophone detectors, where untied
states of whole-word HMM-GMM acoustic models were used to
define the detector set. However, that work considered only a small
vocabulary digit recognition task that required many examples of
each word in the lexicon. In this paper, we exploit state-of-the-
art deep neural network (DNN) acoustic models to generate the
tied triphone state (senone) events, which enable the application
of dictionary-based PPMs and subsequent maximum a posteriori
(MAP) estimation for scaling to open vocabulary search tasks.
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In addition to open vocabulary search, we also consider the use
of our context-dependent PPMs for large vocabulary continuous
speech recognition (LVCSR), which is possible due to recent ad-
vances in the computational efficiency of PPM search algorithms.
We employ the detection-based ASR framework previously consid-
ered for small vocabulary tasks [10, 9]. In contrast to the Viterbi
search of HMM systems, this alternative approach applies a set of
parallel word detectors and derives the most likely word sequence
from their combined output. Critical to this process is the construc-
tion of a word lattice from the set of independent word detections so
that language models can be subsequently applied. We first adapt the
confusion network (CN) [11] algorithm as our baseline approach and
propose our own lattice construction algorithm specially designed
for the PPM framework. Both data structures can be then composed
with a finite state transducer (FST) based language model and ei-
ther decoded for LVCSR or used as the keyword search index for
in-vocabulary queries. We evaluate our proposed approaches with
comprehensive KWS and LVCSR experiments under the JARPA
Babel Program framework [7], which aims to develop robust low-
resource techniques to facilitate KWS search on massive multi-
lingual speech corpus. We find incorporating context-dependency
into the PPM framework produces substantial improvements over
the original monophone PPM system and demonstrate reasonable
LVCSR performance with a small computational footprint.

2. POINT PROCESS MODELS FOR KWS

The PPM KWS framework first transforms input speech signals
into smoothed phone posteriorgram trajectories, of which each
local maxima above a threshold is identified as a phonetic event
corresponding to a single phone occurrence [2]. The extracted pho-
netic events form a phonetic index. Formally, given a time interval
(t,t 4+ T, for each phone p in phone set P, we denote its pho-
netic event set in time at which phone p occurs relative to time ¢ as
Np = {t1,...,tn, }, where n, is the total number of events within
(t,t 4+ T7]. Thus, the set of all observed events arriving in (¢, ¢ + 7]
is Ot e4r = {Np}pep.

Given a keyword w with its occurrence time ¢ and duration 7',
the arrival of phonetic events during the given word realization is
modeled as a collection of inhomogeneous Poisson processes, one
per phone. We approximate the continuous Poisson rate function in
interval (¢, ¢+ 77 as a piecewise constant function over D uniformly
spaced divisions, with the inhomogeneous rate parameter for phone
p denoted as A\, 4 ford = 1, ..., D. We denote the set of keyword-
specific model parameters as 6,,, and the likelihood of the entire
collection Oy ¢y under 6,, given T can be expressed as
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P(Ot,47|T, 0) = H H(Ap,d)""’deﬂ”'ﬂw )

pEP d=1

PPM makes the assumption that the phonetic event timing dis-
tribution is independent of actual word duration, and thus linearly
normalizes all arrival times within (¢, ¢ + 77 into the interval (0, 1]
to produce a transformed event set O;yt 4. Thus, after a change of
variables, the likelihood function of Eq. 1 with O; ;, + becomes

D
p(Og,t+T‘T7 010) = H H(Ap#i)np,de*)\p,d/D (2)

peP d=1

The phonetic event distribution (i.e., the time-varying Poisson
rate function) of each phone instance within a word can be modeled
by a single Gaussian distribution, and given the dictionary, a PPM
can be constructed by assigning a Gaussian to each phone in the
pronunciation [4]. Each Gaussian is further transformed to a GMM
to account for phone confusions, where the mixture weights can be
estimated over entire corpus. For example, a dictionary model for
the Haitian word “alo” is shown in Figure 1(1). Further, the GMMs
are updated by maximum a posteriori (MAP) estimation, benefiting
from the observed phonetic event timing information of any avail-
able training examples [4]. The resulting MAP updated model for
“alo” is depicted in Figure 1(2).

The PPM also requires a background model, assuming that out-
side the word of interest, phonetic events are produced by a homoge-
neous Poisson process characterized by one independent rate param-
eter (i, for each phone p. Thus, the likelihood of observation Oy ¢ 1
under the background model with parameters 64 is obtained as

P(Ote41|T, Obg) = H(Hp)npe—upT )

pEP

To evaluate an unknown utterance, we define the keyword detection
function d,, (t) as the log-likelihood ratio of phonetic events under
the keyword and background model given by
P(Ot,00|0w) }

dw(t) =log | =———"——=

=1 560
g [ [ 2OheszI T, PTY
T19tt471p(Ot 47 [T, Og)

dT} )

P(Oi,tJrT‘Tv ew)P(T‘ew) ]
T100471p(Oy 47T, Obg)

~ max log {

where the hypothesis keyword duration 7' is a latent variable mod-
eled by a gamma distribution, and the integral can be approximated
by computing over a number of candidate durations and taking the
max (with the corresponding 7" as the hypothesized duration) [3].

3. CONTEXT-DEPENDENT PPMS

3.1. Deriving context-dependent phonetic events from DNN

To generate the context-dependent phonetic event streams, we use
a state-of-the-art DNN acoustic model generated with the Kaldi
toolkit [12]. We take as our events the set of tied triphone HMM
states (senones), which are derived from traditional decision tree
clustering of triphone states [8]. The DNN forward pass produces
posteriorgrams over the senones which provide the input to the PPM
pipeline described above, but where the monophone category set
‘P is now replaced with the set of senones. The PPM search index
is created by filtering the posteriorgrams according to the empiri-
cal distribution of each senone’s duration and extracting the local
maxima exceeding an empirically assigned threshold [2].

(1) Dictionary model on monophone events
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Fig. 1. Dictionary/Bayesian MAP estimated phone timing models
for the keyword “alo”, based on monphone/senone events.

3.2. Context-dependent extensions to PPM construction

The original dictionary PPM is constructed by the monophone se-
quence provided by the pronunciation lexicon, so now we need to
extend the dictionary form to that based on triphones, and construct
the dictionary PPM based on the senone sequence. Given the left
and right context phones, we can obtain the senone index for each
central phone by answering the questions in phonetic decision tree.
However, for the first and last phones of a single keyword the left
and right context phones, respectively, are unknown without identi-
fying the adjacent words. Thus, we assume that each phone in the
phone set is equally likely to be the unknown context phones and
we accumulate the senone index count by considering all these pos-
sibilities. We normalize each senone index count to determine the
senone probability that is subsequently used as the GMM mixture
weight in that position. Finally, we smear and renormalize the mix-
ture weights using a global senone confusion matrix estimated from
the training corpus. The resulting dictionary PPM of word “alo”
consisting of senones indexed by integers is shown in Figure 1(3).
Maximum a posteriori (MAP) estimation including any training in-
stances of the word is subsequently performed using the observed
senone event streams. The MAP-estimated PPM for “alo” is shown
in Figure 1(4), where we see substantial movement of the senone
timing distributions.

4. PPM-BASED LATTICE CONSTRUCTION FOR KWS
AND DETECTION-BASED LVCSR

Our proposed detection-based ASR architecture consists of four
steps: (i) we build a PPM for each in-vocabulary (IV) unigram
word, (ii) for each test utterance, run parallel word detectors for
the whole vocabulary, (iii) use the resulting independent word de-
tections to build confusion networks (CNs) or word lattices, and
(iv) use standard techniques to process the CNs/lattices for KWS
indexing [13] and LVCSR decoding [14]. Below we describe our
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CN and lattice construction methodologies.

4.1. PPM-based confusion network construction

The standard confusion network (CN) is derived from a decoding
lattice as a more compact representation with relaxed word sequence
constraints [11]. It requires that the posterior probability for each arc
in the lattice is estimated (by running forward-backward algorithm),
and that the temporal partial order between arcs is derived based on
lattice topology. Since there are word identity, start time, duration,
and posterior probability estimates (by a logistic regression applied
to the likelihood ratio detection score of Eq. 4) associated with each
PPM detection, we can naturally adapt the algorithm of [11] to build
CNs based on PPM detections rather than decoding lattices. For each
test utterance, we first sort the PPM detections of all the IV words
according to their start time, and initialize each detection as an equiv-
alence class (formed by word identity, start and end times). Second,
we perform intra-word clustering to merge the equivalence classes
of the same word identity, and then perform inter-word clustering
based on phonetic similarity, resulting in a complete alignment of
competing detections as confusion bins.

4.2. PPM-based lattice generation

The duration of a PPM detection is hypothesized as the one that gives
the maximum detection function value of Eq. 4, which may not be as
accurate as that derived from the HMMs based on frame likelihood.
Since the KWS scoring metrics can accommodate small time differ-
ences between the detections and the true references, such approxi-
mated duration from PPM is generally sufficient for the KWS task.
However, the CN algorithm relies on strict temporal order between
word components for clustering and inaccurate durations can lead to
suboptimal results. Moreover, the CN algorithm requires word pos-
terior estimates for each detection; the raw PPM detection score is a
likelihood ratio and applying a global logistic regression for normal-
ization is known to give suboptimal posterior estimates [6]. There-
fore, we propose a lattice construction algorithm for the PPM frame-
work to accommodate the duration uncertainties and rely on word
acoustic likelihood only, as described below.

First, for each PPM detection, we express its joint likelihood of
acoustic observations O ¢+ and hypothesized duration as

P(Ot,t47, T)0w) = p(Ot,t+7|T, 0) P(T|0w) 6))

where p(O¢,++7|T, 0) is given by Eq. 1 and further by Eq. 2 with
the event set normalized in time, and P(T'|0.,) is a word-specific
gamma distribution. Second, for an arbitrary region between two
word detections, e.g. non-speech silence or noise, we employ a sepa-
rate silence model of homogeneous Poisson process for the observed
acoustic events in that region that takes the form

P(Ot,i47, T0sit) = p(Or,e+7|T, 0sit) P(T|0si1)
= [Ty e P(Tl000)  ©

peEP

where p represents either context-independent monophone or context-
dependent senone in the event set P, i, is the homogeneous Pois-
son rate parameter for each p under the silence model 6, with
P(T|6s:) modeled by a gamma distribution. Thus, we have ap-
proaches to compute acoustic likelihoods given any word hypothesis
or an arbitrary region of acoustic observations.

Our strategy is to define “words-on-nodes” lattices, where each
word detection becomes a node and the edges encode the temporal

sequence of detections with directed arcs that can accommodate a
sensible amount of temporal overlap. We define the construction
process using the following notation. We denote the set of all the
detections within a given utterance as D, and sort D according to
each detection’s start time. For each word detection d; € D with
index ¢ in time, we define a node with acoustic likelihood given by
Eq. 5, and t,(d;) as its start time. We refer to all observed acoustic
events that have arrived during the course of d; as set p(d;), which
is also the set of events used to give the maximum value of Eq. 4.

The goal is to produce a directed acyclic graph, where ¢(d;) is
the set of word detections (nodes) that d; has an outgoing edge to,
such that any word in ¢(d;) can follow d; in the output word se-
quence. We make each detection d; (except the final node defined as
the end of the utterance) connect to at least one another next node (in
time) d; (j > ), which we require by that: (i) d; does not consume
any acoustic event arrived during d;, i.e., no intersection between
p(d;) and p(d;), and (ii) the time gap between observations of d;
and d; does not exceed a maximum allowable time gap ¢ (initial-
ized as 1 sec) if possible. If we denote t,(d;) as time of the first
phonetic event observed in time within d;, and t'e(di) as time of its
last observed event, then condition (i) becomes . (d;) < t5(d;), and
condition (ii) becomes (¢s(d;) — to(di)) < 4.

Also, if there are no acoustic events between time interval
(te(d;), ts(d;)), we connect d; to d; with a free edge. If there is, we
add a new node as d;; of which the acoustic likelihood is computed
by Eq. 6 on the acoustic events between interval (t.(d;),ts(d;))
and the duration is given by (¢s(d;) — t.(d;)); further, we connect
d; to dsy; and connect dg;; to dj.

In this approach, we can finally obtain a directed acyclic graph
where each node is associated with its word identity, acoustic like-
lihood, start time and duration. By replying on the phonetic event
timing information to determine the temporal order of the word se-
quence, we relax the accurate estimation of word start and end times
but still enable an appropriate lattice construction, with the uniden-
tified phonetic events accounted by optionally added silence nodes.

Finally, we convert the graph into a standard lattice with word
and acoustic likelihood on each arc, which can be processed by stan-
dard FST-based algorithms such as language model composition.

5. EXPERIMENTS

5.1. Evaluation design and system implementation

We perform evaluation in the same IARPA Babel Program frame-
work as described in [6], on two of the Babel languages — Haitian'
and Bengali® under the limited language (LimitedLP) resource con-
dition. For training, each language contains 10 hours of transcribed
speech audio along with language model text and pronunciation
dictionary entries restricted to those in the given 10 hours. For
evaluation, we have a 10-hour development-testing collection for
each language while tuning on a 2-hour subset. We use Actual
Term-Weighted Value (ATWV) and Oracular Term-Weighted Value
(OTWYV) [15] as KWS scoring metrics. The same infrastructure of
DNN-HMM acoustic models is used as [6], with a 5-layer DNN of
p-norm units (p = 2) [16] and pitch-augmented PLP features. Each
dictionary-based unigram or multi-word PPM is synthesized and
MAP updated as in [4, 5], with the extension described in Section 3
when operating on senone events.

Language collection release IARPA-babel1201b-v0.2b.
2Language collection release IARPA-babel103b-v0. 4b.
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Table 1. PPM search performance for Haitian and Bengali, along with relative gain from using senone over monophone events.

Language [ PPM System [ OTWYV (All) [ ATWYV (All) [ ATWYV (IV unigram) [ ATWYV (unigram) [ ATWYV (multiword)

# of keywords 1921 1921 418 573 1348
Haitian monophone 0.361 0.212 0.119 0.127 0.249
senone 0.380 0.225 0.158 0.159 0.253

% Gain 5.3 6.1 32.8 252 1.6

# of keywords 1967 1967 603 926 1041
Bengali monophone 0.222 0.101 0.029 0.041 0.154
senone 0.237 0.111 0.061 0.061 0.155

% Gain 6.8 9.9 110.3 48.8 0.6

Table 2. KWS performance (IV unigrams) comparison between
keyword-specific PPM search and lattice-based approach.

Language | PPM System [ OTWV [ ATWV
baseline, monophone | 0.241 0.119
cn, monophone 0.233 0.066
lattice, monophone 0.257 | 0.129
Haitian % Gain 6.6 8.4
baseline, senone 0.298 0.158
lattice, senone 0.305 0.175
% Gain 2.3 10.8
baseline, monophone | 0.113 0.029
lattice, monophone 0.122 | 0.029
Bengali % Gain 8.0 0.0
baseline, senone 0.162 0.061
lattice, senone 0.173 0.080
% Gain 6.8 31.1

Table 3. WER performance from PPM and HMM lattices.

Language [ System [ WER
PPM lattice, monophone | 74.1

Haitian PPM lattice, senone 69.8
HMM, senone 59.6

PPM lattice, monophone | 80.5

Bengali PPM lattice, senone 71.9
HMM, senone 66.8

5.2. Evaluation for Context-dependent PPM

We first evaluate the efficacy of incorporating context-dependency
into the original PPM framework without lattice construction, where
the word posterior is approximated by a logistic regression applied
to detection score of Eq. 4. The results are shown in Table 1. We
see that context-dependent PPM on senone events significantly out-
performs the monophone baseline in nearly all categories, but re-
mains the same for multi-word keywords. We can account for this
by the fact that more monophone events are observed in the gener-
ally longer multiword queries, which limits the additional benefit of
more detailed triphone patterns.

Finally, it is important to note that even though the senone set
(approximately 2000 units) is much larger than monophone set (~50
dimension), in practice the PPM search index size is on average only
2.2 times larger than before. This is a result of the fact that the
increase in posteriorgram units does not substantially reduce event
sparsity since the new units are generally mutually exclusive. It fol-

lows that the PPM’s storage advantages highlighted in [5] are main-
tained despite the increased model detail.

5.3. Evaluation for PPM-based lattice generation

We refer to the independent keyword-specific PPM search evalu-
ated above (without lattice construction) as the baseline in Table 2,
and compare with the PPM’s CN and lattice-based KWS. Since key-
words tend to have lower unigram probabilities in training transcript,
to increase the keyword recall we keep more detections for words
that occur rarely during training. To accomplish this we prune PPM
detections of each IV unigram based on its unigram probability us-
ing empirically determined thresholds. Further, confusion networks
and lattices are obtained as described in Section 4, and we compose
them with a FST-based language model to give each arc a trigram
language model prior, with a tuned acoustic scaling factor.

Table 2 shows that the adapted confusion network approach
does not outperform baselines, a result of suboptimal duration and
posterior estimation issues discussed in Section 4.2. The proposed
words-on-nodes lattice generation algorithm leads to consistent
KWS improvements for both monophone and senone event-based
systems. We also find that, combining context-dependency and
PPM lattice generation yields significant gains over the original
monophone baseline.

Finally, Table 3 shows the lattices generated by PPM framework
can also provide reasonable ASR performance. Though its WER
trails the DNN-HMM systems, it has obvious computational merit.
The PPM index is created about 2x faster than real time (RT), and
each IV word can be detected in parallel with speeds 500,000x faster
than RT [3]. The subsequent PPM lattice construction complexity
is of order O(N?), where N is the number of detections in an ut-
terance; since we only consider connecting each detection with its
close neighbors, the runtime in practice is in excess of 1,000x faster
than RT. Thus, we find the overall runtime of PPM decoding and lat-
tice generation much more efficient than the real-time factor 8.41 of
the DNN-HMM based lattice generation (comparing based on one
single core of a 2.40-GHz Intel Xeon processor). The subsequent
operations of language model composition and lattice indexing are
efficiently implemented in a WFST-based framework as before [13].

6. CONCLUSIONS

The incorporation of context-dependent phonetic events into the
PPM framework produces substantial KWS performance improve-
ments with only a small increase in computational complexity.
Lattice generation produces further KWS improvements by incor-
porating language models and better score normalization. Further-
more, lattices support LVCSR decoding, which gives reasonable
performance for a first attempt on a difficult task.
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