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ABSTRACT 
 

In this paper, we propose a cross-lingual deep neural network 

(DNN) based submodular unbiased data selection approach for 

low-resource keyword search (KWS). A small amount (e.g. one 

hour) of transcribed data is used to conduct cross-lingual transfer. 

The frame-level senone sequence activated by the cross-lingual 

DNN is used to represent each untranscribed speech utterance. The 

proposed submodular function considers utterance length 

normalization and the feature distribution matched to a 

development set. Experiments are conducted by selecting 9 hours 

of Tamil speech for the 2014 NIST Open Keyword Search 

Evaluation (OpenKWS14). The proposed data selection approach 

provides 35.8% relative actual term weighted value (ATWV) 

improvement over random selection on the OpenKWS14 

Evalpart1 data set. Further analysis of the experimental results 

shows that both utterance length normalization and the feature 

distribution estimated from a development set deployed in the 

submodular function can suppress the preference to select long 

utterances. The selected utterances can cover a more diverse range 

of tri-phones, words, and acoustic variations from a wider set of 

utterances. Moreover, the wider coverage of words also benefits 

the acquired linguistic knowledge, which also contributes to 

improving KWS performance.  

Index Terms— Submodular optimization, keyword spotting, 

spoken term detection, active learning 

 

1. INTRODUCTION 
 

The amount of multimedia data on the Internet has increased 

rapidly during the past decades, so the demand on efficient data 

indexing and search techniques is growing. Searching for 

keywords in spoken documents is still challenging because spoken 

documents are usually untranscribed [1-8]. Most state-of-the-art 

approaches for keyword search (KWS) are based on automatic 

speech recognition (ASR) [3-8]. With an ASR system, a lattice is 

generated for each spoken document in an archive. The lattices are 

converted to an inverted index, and KWS is performed on the 

inverted index. 

Building an ASR system requires transcribed speech and 

linguistic knowledge. However, it is both time-consuming and 

costly to manually transcribe the speech data as well as to construct 

a lexicon for a particular language, especially for a low-resource 

language. This motivates us to build an efficient ASR system using 

as little transcribed data as possible. To achieve this, one way is to 

select representative speech utterances for manual transcription 

instead of transcribing the entire set. 

In this work, to accomplish the KWS task of a low-resource 

language, we assume that an initial small amount (e.g. one hour) of 

manually transcribed speech data and a large amount of 

untranscribed speech data are available. The data selection problem 

is to select a subset of the untranscribed data for manual 

transcription. The words that we find from the manual transcription 

are included to construct a pronunciation dictionary. The selected 

data together with the initially transcribed data is then used to build 

an ASR system for KWS. In this paper, we would also like to study 

which factors are important for improving KWS performance. 

A preliminary investigation of Gaussian component index 

based submodular data selection for low-resource keyword search 

has been reported in our previous work [9]. It is an unsupervised 

data selection approach. This work further extends [9] in two 

aspects. Firstly, we use the initially transcribed data as a seed to 

select untranscribed data for manual transcription. We use the 

small amount of data to conduct cross-lingual transfer, then the 

frame-level senone sequence activated by the cross-lingual DNN is 

used to represent each untranscribed utterance, and then the 

submodular based data selection approach is used to select the 

untranscribed utterances for manual transcription; Secondly, we 

propose a novel objective function for submodular optimization. In 

the objective function, utterance length normalization and the 

feature distribution matched to a development set are both 

considered to further improve KWS performance. Utterance length 

normalization is aimed to increase speaker diversity by suppressing 

the preference to select long utterances.  

The effect of data selection on KWS performance, to the best 

of our knowledge, is not well studied. The most related study is our 

previous work [9], in which using Gaussian component index 

based n-grams as features in the submodular function does not 

require an initial ASR system, and the submodular function 

provides a near-optimal solution in terms of the objective being 

optimized. However, it is worth noting that different kinds of 

active learning techniques have been investigated to address the 

data selection problem for phone recognition and ASR. For 

unsupervised submodular based data selection, a Fisher-kernel 

based graph [10] over untranscribed utterances was proposed, but 

this approach requires computing the similarity between all 

utterance pairs. In a later work, a two-level feature-based 

submodular function was proposed to select a subset of 

untranscribed data in the TIMIT corpus for training phone 

recognizers [11]. 

Another type of related work is semi-supervised and 

supervised data selection. Confidence-based approaches [12-17] 

are commonly used for semi-supervised data selection, in which an 

initial ASR system is available to obtain phone hypotheses of the 

untranscribed data. The informative utterances are selected and 
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used to update the initial ASR system.  Itoh et al. [18] suggested 

that both informativeness and representativeness of the data should 

be assessed. Siohan et al. [19, 20] proposed to use i-vector and 

senone sequences to represent utterances, and use relative-entropy 

data selection algorithm to select utterances, so the acoustic or 

phonetic distribution of the informative utterances was considered. 

Wu et al. proposed to choose data uniformly according to the 

distribution of the target speech units [21]. However, these 

approaches cannot provide any optimality guarantee as those based 

on submodular optimization. 

Submodular optimization was also considered in semi-

supervised and supervised data selection. Wei et al. proposed the 

feature-based submodular data selection approach using phone n-

grams as features [22] to select a subset of labeled data to build an 

ASR system. Wei et al. proposed to use the string kernel 

submodular data selection [23] for phone recognition, which was 

based on the hypothesis of each utterance derived by a phone 

recognizer. Shinohara considered a desired (uniform) phone 

distribution in the submodular function [24] for speech data 

selection.  
 

2. SUBMODULAR FUNCTION AND OPTIMIZATION  
 

A set-valued function 𝒇: 𝟐𝑽 → ℝ is a submodular function if for 

every subset 𝐀 and 𝐁 in a finite set 𝑽 = {𝟏, 𝟐, ⋯ , 𝑵} with 𝐀 ⊆ 𝐁 

and each item 𝒔 ∈ 𝑽\𝑩, 

𝑓(𝐵 ∪ {𝑠}) − 𝑓(𝐵) ≤ 𝑓(𝐴 ∪ {𝑠}) − 𝑓(𝐴).           (1) 

Submodularity is a property of set-valued function, and it 

means that the gain by adding an element into a smaller set should 

not be less than that by adding the element into a superset. 

Different submodular functions have been proposed and used in 

speech data selection [9-11, 22-25]. 

A submodular function 𝑓  is monotone non-decreasing if 

𝑓(𝐴 ∪ {𝑠}) − 𝑓(𝐴) ≥ 0  for ∀𝑠 ∈ 𝑉\𝐴, 𝐴 ⊆ 𝑉 . A submodular 

function 𝑓 is normalized if 𝑓(Ø) = 0, and Ø is empty set. 

The subset selection problem can be formulated as follows: 

max𝑆⊆𝑉{𝑓(𝑆): 𝑐(𝑠) ≤ 𝐾}                           (2) 

 

where 𝒄(𝒔) ≤ 𝑲 is a constraint. For ASR application, a subset 𝑺 of 

training data is selected from 𝑽 by maximizing the objective 

function 𝒇 at the constraint 𝒄(𝒔) ≤ 𝑲. The constraint can be the 

number of selected utterances, or the number of hours of the 

selected utterances. 

The subset selection problem is NP hard. But it can be 

approximately solved using a simple greedy forward selection 

algorithm. The solution is guaranteed to be near-optimal [26], and 

it is the best we can do in polynomial time unless 𝑃 = 𝑁𝑃[27]. 

 

3. DATA SELECTION FOR ACOUSTIC MODELING 
 

3.1. Cross-lingual DNN based utterance representation  

 

Cross-lingual knowledge transfer is an efficient approach to 

improve the performance of low-resource ASR by transferring the 

knowledge of rich-resource language(s) to a low-resource 

language. Borrowing the feature extractor or acoustic model of 

rich-resource language(s) at deep neural network framework is 

common way for knowledge transfer in ASR [28-33]. The shared-

hidden-layer multilingual deep neural network (SHL-MDNN) 

framework for cross-lingual knowledge transfer has been 

successfully applied in low-resource ASR or KWS [33]. At the 

SHL-MDNN framework, different languages share hidden layers 

except the language-dependent softmax layer. 

It is difficult to build an efficient ASR system with the initial 

small amount of transcribed data. An efficient approach is to 

conduct cross-lingual transfer using the small amount of target-

language data. We stack the softmax layer of the target language to 

the shared hidden layers of the SHL-MDNN, and only the softmax 

layer is updated when the small initial amount of target-language 

training data is presented to the model. 

Each untranscribed utterance is decoded by the cross-lingual 

DNN to generate a frame-level senone sequence. We count the n-

grams of the senone sequence, and the term frequency-inverse 

document frequency (tf-idf) of the n-grams is used to represent 

each utterance in a fixed-dimensional vector. 

 

3.2. Feature based submodular function 

 

There are different submodular functions proposed for data 

selection. The feature-based submodular function 𝑓𝑓𝑒𝑎(𝑆) =

∑ 𝑔(𝑚𝑢(𝑆))𝑢∈𝑈  is commonly adopted for data selection, where 

𝑚𝑢(𝑆) = ∑ 𝑚𝑢(𝑠)𝑠∈𝑆 measures the degree of feature 𝑢  in the 

subset 𝑆 [22], 𝑚𝑢(𝑠) is defined by the tf-idf vector of utterance s, 

and 𝑔(∙) is a monotone non-decreasing function. Compared with 

the facility location based submodular function in [10], the feature-

based submodular function 𝑓𝑓𝑒𝑎(⋅) does not need to compute the 

similarity between two utterances, so it can obtain lower 

computation complexity.  

A shortcoming of the feature-based submodular function 

𝑓𝑓𝑒𝑎(⋅) is that it prefers to select long utterances. If the constraint is 

the total number of hours of the selected utterances and the number 

of selected utterances is small, the selected long utterances could 

limit the overall acoustic variation (such as speaker diversity). In 

[9], the development set matching based submodular function 

𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎(𝑆) = ∑ 𝑝𝑢𝑙𝑜𝑔(𝑚𝑢(𝑆))𝑢∈𝑈  is used for data 

selection, where {𝑝𝑢} is the distribution of feature 𝑢 ∈ 𝑈, and is 

estimated from a development set. Using {𝑝𝑢} as feature weights is 

aimed to target a subset of features in the selection. Empirically we 

find that this alleviates the preference of selecting long utterances. 

In this paper, we would further reduce the preference of 

selecting long utterances. We normalize the measurement of the 

degree of feature u in utterance s by its utterance length. The 

proposed function is as follows:  

𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎+𝑙𝑒𝑛−𝑛𝑜𝑟𝑚(𝑆)

= ∑ 𝑝𝑢 log (∑
1

𝑙(𝑠)
𝑚𝑢(𝑠)

𝑠∈𝑆
)

𝑢∈𝑈
 

= ∑ 𝑝𝑢 log(𝑚𝑢
∗ (𝑆))𝑢∈𝑈                          (3)                   

where 𝑙(𝑠) is the length of utterance 𝑠,  𝑚𝑢
∗ (𝑆) = ∑

1

𝑙(𝑠)
𝑚𝑢(𝑠)𝑠∈𝑆  

measures the average degree of feature 𝑢 in the subset 𝑆. Eq. (3) is 

a submodular function according to submodular theory [26, 27, 34]. 

 

4. EXPERIMENTS 
 

4.1. Experimental setup 

 

The Tamil data provided by the IARPA Babel program for 

OpenKWS14 was used in experiments. There are two conditions 

which correspond to two sets of training data. One is full language 

pack (FLP), and another is limited language pack (LLP). In FLP 
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condition, all data resources including 60 hours of transcribed 

audio can be used to build a keyword search system. LLP contains 

a subset of 10 hours of transcribed audio in FLP, and the remaining 

data in LLP is untranscribed audio from the remaining data in FLP. 

The audio data is conversational telephone speech obtained from 

different channels, like landlines, cell phones, and phones 

embedded in vehicles. The scripted speech which is aimed to 

improve the coverage of phonemes is also included in FLP. The 

speech from four languages (including Cantonese, Pashto, Turkish, 

and Tagalog) in the Babel corpora was used for multilingual DNN 

training. For the four languages, more than 100 hours of data are 

recorded in each full language pack (FLP), and pronunciation 

lexicon only covers the word appeared in training transcription. 

One hour of transcribed data used for cross-lingual knowledge 

transfer was randomly selected from FLP. 

For evaluating our proposed approach, we built three baseline 

systems. The first baseline system (denoted as LLP) was built 

using the training data in LLP. The second baseline system 

(denoted as FLP-10h-Random) was built using randomly selected 

10 hours of data from FLP, and its performance was reported by an 

average result of two runs. The third baseline system (denoted as 

MaxEnt) was built using the maximum entropy approach proposed 

in [21] to select 10 hours of data from the 60-hour transcribed 

audio in FLP. We also built a topline system (denoted as FLP) 

using the 60 hours of training data in FLP.  

All KWS systems are word based. The actual term weighted 

value (ATWV) and word error rate (WER) were used to measure 

the performance of keyword search systems and the underlying 

ASR systems. The 10 hours of development set Dev10h and 15 

hours of evaluation part 1 Evalpart1 were used for our evaluation. 

The keyword list provided for OpenKWS14 which contains 5,576 

keywords or keyword phrases was used for evaluating keyword 

search systems. All hybrid DNN acoustic models were built as in 

our previous work [9]. The tri-gram language models trained using 

corresponding training transcriptions were used for lattice 

generation. The number of activated non-silence senones was used 

to measure the length of utterance in Eq. (3). The Kaldi toolkit and 

its KWS recipe [35] were used in our experiments. 

 

4.2. Experimental results 

 

Table 1 lists the performance of different keyword search systems 

built using different sets of data. “FLP-Proposed” was built using 

our proposed approach, in which one hour of data was initially 

available and 9 hours of data was selected from the remaining 59 

hours of audio in FLP. From Table 1, we can see that: (1) The 

WER is high for all underlying ASR systems due to the low-

resource condition (in both acoustic models and language models); 

(2) The performance of the keyword search system built using our 

proposed approach is better than that of the three baseline systems, 

and there are 27.8%, 35.8% and 42% relative ATWV 

improvements on Evalpart1 when comparing with “LLP”, “FLP-

10h-Random” and “MaxEnt” respectively. 

Table 1. Comparison of different data selection approaches 

 Data Set FLP LLP 
FLP-10h-

Random 
MaxEnt 

FLP-

Proposed 

WER 

(%) 

Dev10h 64.4 75.4 78.7 78.9 71.8 

Evalpart1 66.1 77.0 79.8 79.9 71.6 

ATWV 
Dev10h 0.4349 0.2336 0.2203 0.2096 0.3028 

Evalpart1 0.4222 0.2313 0.2199 0.2081 0.2986 

In order to analyze the effect of different utterance 

representation approaches for data selection, we selected 

𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎+𝑙𝑒𝑛−𝑛𝑜𝑟𝑚(⋅) as the submodular function, and 

conducted experiments using different utterance representations: 

senone sequences decoded by a cross-lingual DNN, Gaussian 

component index sequences as in [9], and phone sequences 

decoded by the BUT Hungarian phone recognizer [36]. Table 2 

lists the experimental results. We believe that the cross-lingual 

DNN and the Gaussian mixture model, which suffer less from 

acoustic data mismatch, can provide more accurate utterance 

representations and select more representative utterances for 

building ASR and KWS systems. 

Table 2. Comparison of different utterance representations 

 Data Set 
Cross-lingual 

DNN Senones 

Gaussian 

Component 

Indices 

Phones from 

BUT Hungarian 

recognizer   

WER (%) 
Dev10h 71.8 71.6 77.3 

Evalpart1 71.6 73.3 78.4 

ATWV 
Dev10h 0.3028 0.2982 0.1874 

Evalpart1 0.2986 0.2916 0.1991 

Table 3. Comparison of different submodular functions 

 
WER (%) ATWV 

Dev10h Evalpart1 Dev10h Evalpart1 

𝑓𝑓𝑒𝑎(⋅) 80.6 81.3 0.1249 0.1271 

 𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑒𝑐ℎ𝑒𝑑−𝑓𝑒𝑎(⋅) 73.3 74.4 0.2952 0.2850 

𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎+𝑙𝑒𝑛−𝑛𝑜𝑟𝑚(⋅) 71.6 73.3 0.2982 0.2916 

In order to analyze the effect of different submodular functions 

for KWS, we conducted experiments using different submodular 

functions with the Gaussian component index based utterance 

representation. Table 3 lists the experimental results. From Table 3, 

we observe that: (1)  𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎(⋅)  which includes {𝑝𝑢} 

estimated from the development set as feature weights in the 

submodular function, obviously outperforms 𝑓𝑓𝑒𝑎(⋅) ; (2) When 

comparing with  𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎(⋅)  used in our previous work 

[9], 𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎+𝑙𝑒𝑛−𝑛𝑜𝑟𝑚(⋅) provides 4.8% relative ATWV 

improvement on Evalpart1.  

In addition to WERs and ATWVs, we further investigated the 

difference of the selected utterances between using the three 

submodular functions. In each set of selected data, together with 

the corresponding training transcriptions, we measured the average 

length of the utterances (denoted as “Avg. Length”; in second), the 

total number of unique cross-word tri-phones (denoted as 

“#Triphone”), the average number of occurrences of each tri-phone 

(denoted as “Avg. Occ.”), the total number of unique words 

(denoted as “|L|”), and the number of unique out-of-vocabulary 

keywords or keyword phrases (denoted as #OOV). The statistical 

results are summarized in Table 4. 

Table 4. Statistics of the selected utterances using different 

submodular functions 

 
Avg. 

Length 
#Tri-

phone 
Avg. 

Occ. 
|𝐿| #OOV 

𝑓𝑓𝑒𝑎(⋅) 11.17 9725 25.1 11984 1910 

 𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑒𝑐ℎ𝑒𝑑−𝑓𝑒𝑎(⋅) 8.02 11669 45.0 18844 972 

𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎+𝑙𝑒𝑛−𝑛𝑜𝑟𝑚(⋅) 1.72 11719 47.8 18694 1309 

From the statistical results, we observe that: (1) 𝑓𝑓𝑒𝑎(⋅) prefers 

to select longer utterances. It covers fewer tri-phones and fewer 
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words, and leads to more out-of-vocabulary keywords or keyword 

phrases. These explain why it provides the highest WER and the 

poorest ATWV; (2) By considering the feature distribution 

estimated from the development set in the submodular function, it 

can cover more tri-phones and more words, and reduce the number 

of out-of-vocabulary keywords or keyword phrases. These lead to 

better keyword search performance; (3) When utterance length 

normalization is considered in the submodular function, the 

preference to select longer utterances is further suppressed. This 

leads to further cover more tri-phones, more utterances, and more 

acoustic variations from different utterances. And this is probably 

the reason why 𝑓𝑑𝑒𝑣−𝑚𝑎𝑡𝑐ℎ𝑒𝑑−𝑓𝑒𝑎+𝑙𝑒𝑛−𝑛𝑜𝑟𝑚(⋅) 

 performs the best in terms of WER and ATWV. 

The number of words in the lexicon given in the LLP is 14,269. 

When our proposed data selection approach was used, the number 

of words in the lexicon increased to 18,694. Since our proposed 

approach can select more words, and we believe that the linguistic 

knowledge (including lexicon and language model) acquired from 

the corresponding training transcription is more information rich. 

To further study how the acoustic model and the linguistic 

knowledge acquired by our proposed approach affect the keyword 

search performance, we utilized different lexicons (with LMs 

updated according to their lexicons) for keyword search with the 

same acoustic model of the keyword search system “FLP-

Proposed”. Table 5 lists the experimental results. 

From Table 5, we can find that: (1) With the lexicon of FLP, 

the keyword search system can obtain better performance though it 

performs worse than the topline system (FLP) reported in Table 1; 

(2) With the lexicon of LLP, the keyword search system performs 

worse comparing with our proposed system. The acoustic model 

trained using our selected data is better than the acoustic model 

trained using the data in LLP (see the LLP column in Table 1); (3) 

While the linguistic knowledge acquired by our proposed approach 

helps improving the performance of KWS and the underlying ASR 

system, the ATWV is more sensitive to the acquired linguistic 

knowledge than the WER. 

Table 5. KWS Performance using different lexicons.  

All systems use the acoustic model “FLP-Proposed”. 

 
WER (%) ATWV 

Dev10h Evalpart1 Dev10h Evalpart1 

Proposed Lexicon 71.8 71.6 0.3028 0.2986 

LLP Lexicon 72.2 73.3 0.2927 0.2726 

FLP Lexicon 70.2 71.3 0.3451 0.3491 

As manually constructing a lexicon is time-consuming and 

costly, one potential solution of building a keyword search system 

is to ignore the out-of-vocabulary words by modeling them using a 

garbage model. The keyword search system is denoted as “Fixed-

LLP-Lex” in Table 6. 

The keyword search performance of “Fixed-LLP-Lex” dropped 

by at least 0.0737 in terms of ATWV on Evalpart1, when 

comparing with “FLP-Proposed” in which a manual lexicon was 

used. Many words were modeled using the garbage model so that 

the acoustic models could not be well trained, which led to poor 

keyword search performance. We also built a keyword search 

system, which used the phonetisaurus grapheme-to-phoneme (G2P) 

toolkit [37] to automatically acquire the pronunciation of the new 

words discovered by our proposed approach. This keyword search 

system is denoted as “LLP-Lex-Plus-G2P” and its performance is 

also listed in Table 6. “LLP-Lex-Plus-G2P” performed better than 

“Fixed-LLP-Lex”, and performed comparable with “FLP-Proposed” 

in which a manual lexicon was used.  

Table 6. KWS performance using different lexicon conditions. 

All systems use acoustic model “FLP-Proposed”. 

 
WER (%) ATWV 

Dev10h Evalpart1 Dev10h Evalpart1 

Manual lexicon 71.8 71.6 0.3028 0.2986 

Fixed-LLP-Lex 74.5 75.9 0.2368 0.2249 

LLP-Lex-Plus-G2P 71.9 72.8 0.3028 0.2881 

 

5. CONCLUSIONS 
 

In this paper, we propose to use a frame-level senone sequence 

decoded by a cross-lingual DNN to represent each untranscribed 

utterance, and use the submodular function, which consider 

utterance length normalization and the feature distribution matched 

a development set, to select utterances for transcription for further 

improving the performance of a low-resource keyword search 

system. Experiment results show that n-grams of senone sequences 

provide a kind of utterance representation with performance 

comparable to that provided by n-grams of Gaussian component 

indices. And it is shown that both utterance length normalization 

and the feature distribution estimated from a development set 

deployed in the submodular function can suppress the preference to 

select long utterances. This can lead to the selected utterances to 

cover more different tri-phones and words, and more acoustic 

variations from different utterances. If the lexicon needs to cover 

all the words discovered in the selected utterances, this 

unavoidably increases the budget for updating the lexicon. Our 

experiment shows that using G2P to automatically acquire the 

pronunciation of the new words can accomplish a comparable 

ATWV as manually updating the lexicon. This strategy is 

especially practical for a low-resource setting. 
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