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Human Language Technology and Pattern Recognition, Computer Science Department,
RWTH Aachen University, 52056 Aachen, Germany
{tuske, irie, schlueter, ney}@cs.rwth-aachen.de

ABSTRACT

Inspired by the success of multi-task training in acoustic modeling,
this paper investigates a new architecture for a multi-domain neural
network based language model (NNLM). The proposed model has
several shared hidden layers and domain-specific output layers. As
will be shown, the log-linear interpolation of the multi-domain out-
puts and the optimization of interpolation weights fit naturally in the
framework of NNLM. The resulting model can be expressed as a
single NNLM. As an initial study of such an architecture, this paper
focuses on deep feed-forward neural networks (DNNs). We also re-
investigate the potential of long context up to 30-grams, and depth
up to 5 hidden layers in DNN-LM. Our final feed-forward multi-
domain NNLM is trained on 3.1B running words across 11 domains
for English broadcast news and conversations large vocabulary con-
tinuous speech recognition task. After log-linear interpolation and
fine-tuning, we measured improvements in terms of perplexity and
word error rate over the models trained on 50M running words of
in-domain news resources. The final multi-domain feed-forward LM
outperformed our previous best LSTM-RNN LM trained on the 50M
in-domain corpus, even after linear interpolation with large count
models.

Index Terms— multi-domain, language modeling, deep feed-
forward network, LM adaptation, log-linear, interpolation

1. INTRODUCTION

The language model (LM) is a crucial component for various lan-
guage and speech processing systems to achieve state-of-the-art re-
sults. Mainly, two approaches to train LMs are used and combined
to build the best LM. First, the conventional count models, whose
estimation is based on the relative frequencies of n-gram counts and
a smoothing technique [1, 2]. Second, the neural network based lan-
guage models (NNLMs), whose architecture can be a feed-forward
[3, 4] or a recurrent network (RNN) [5]. Nowadays, NNLMs, espe-
cially recurrent ones, have become very popular and recent advances
in LMs are mainly due to improvement in NN based language mod-
eling, e.g. by introducing long short-term memory (LSTM) cells. As
pointed out in [6], the potential of the deep feed-forward networks
for LM are rarely investigated thoroughly. Due to the high com-
putational cost, the NNLMs are often trained only on a relatively
small selection of in-domain data set. Though some strategies have
been studied to train NNLMs on large data [7, 8], only few works
have been done using domain adaptation techniques for NNLMs. In
fact, the domain adaptation for NNLMs does not have a straight-
forward solution as for the count model. In case of count models,
the most common approach to train a domain adapted LM, when a
large amount of data is available from different sources, is to train

a LM separately on each sub-corpus. Then they are linearly inter-
polated with weights which are optimal to minimize the perplexity
of the combined model on a given development data. By model ar-
chitecture, the count models are suited to be linearly combined into
one single model. Such an approach is possible for NNLMs, but
turns out to be awkward because there is no straightforward manner
to linearly combine individual NNLMs into one single model in the
end.

Therefore, we study a new architecture for multi-domain NNLM
which is inspired by multi-task training [9]. We show that if a com-
mon lexicon, shared hidden layers, and domain-specific final linear
layers are applied, the combination of the multiple domain outputs
naturally fits to the log-linear interpolation of [10]. Besides, the per-
formance of DNN LMs being provided with long contexts (up to 30-
gram) and depth (up to 5 non-linear layers) is also re-investigated.

The paper is organized as follows. After the overview of the
related work in Section 2, Section 3 presents the log-linear interpo-
lation of multi-domain NNLM. The details about our experimental
setups are given in Section 4, and Section 5 presents the experimen-
tal results. The paper closes with conclusions in Section 6.

2. RELATED WORKS

Previous works on multi-domain adaptation of NNLMs for speech
recognition include [11, 12] for feed-forward LMs and [13, 14] for
RNN LMs. [11] investigated an unsupervised 2-pass approach: af-
ter a rescoring with an unadapted NNLM, an adaptation layer was
inserted between projection and hidden layer. Whereas in [12], a
domain dependent element-wise multiplication layer is set between
projection and hidden layers of NNLM and learned during training.
In [13], a domain dependent additive term is added to the RNN LM
after the recurrent layer. On the other hand, in [14], the domain in-
formation is fed as an additional input feature to the RNN LM. The
technique presented in this paper differs from these previous works
as follows. In terms of model architecture, the investigated LM has
domain dependent output layers inspired by the work of [9]. Besides
linear interpolation of count model and NNLM, this study proposes
the application of log-linear interpolation method of [10] on multi-
domain NNLMs which is shown to result in a single model. As an
initial step towards NNLM with multi-domain output, we focus only
on deep feed-forward neural networks – like [15]. We also compare
our model with the previous best LSTM-RNN LM of [16].

3. LOG-LINEAR INTERPOLATION OF NNLMS

In this work we limited our investigation on language models with
conditional dependence on the previous n− 1 words. However, the
log-linear interpolation of multi-domain NN language model can be

6005978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



R

E

L

U

S

O

F

T

M

A

X

R

E

L

U

R

E

L

U

R

E

L

U

Fig. 1. Multi-domain training of neural network LM. Except the
last linear layer, the hidden layers are shared between the different
domains.

formulated in a general way using arbitrary history h. The log-linear
interpolation of language models was introduced in [10]:

p(w|h) = 1

Zλ

∏
j

pj(w|h)λj

Zλ =
∑
w

∏
j

pj(w|h)λj

(1)

Where p(w|h) is the word posterior probability estimate af-
ter the interpolation, the scalar λj corresponds to the interpolation
weight, pj(w|h) is the word posterior estimate of the jth model
given the history. The Zλ ensures that the output of the interpolated
models sums up to one.

The last layer of a neural network corresponds to a log-linear
model with linear feature functions. Assuming multiple log-linear
models are trained on the same feature vector y(h), e.g. extracted
through a set of common nonlinear transformations from h (see
Fig. 1), their log-linear combination results in the followings:

∏
j

pj(w|h)λj =

∏
j

exp(λj(a
T
wj · y + bwj))∏

j

∑
w′
exp(λj(aTw′j · y + bw′j))

(2)

Where vector awj and scalar bwj generate the posterior estimate
of word w of the jth model given y. In this paper different j cor-
responds to different domain. The common nonlinear transforma-
tions – e.g. shared deep feed-forward neural network layers – and
the domain-dependent layer are trained jointly (Fig. 1). Substituting
Eq. 2 into Eq. 1 results in

p(w|h) = exp(ãTw · y + b̃w)∑
w′
exp(ãTw′ · y + b̃w′)

where ãw =
∑
j

λj · awj and b̃w =
∑
j

λj · bwj
(3)

Eq. 3 indicates an advantageous property of a neural network
with domain dependent last layer and shared hidden layers. The
log-linear interpolation results in a single neural network compris-
ing a weighted sum of the domain dependent linear layers. Further-
more, the implementation of log-linear interpolation is straightfor-
ward with existing neural network toolkits. First, the domain depen-
dent weight matrices and biases should be interleaved row-wise. De-
noting the lexicon size byW , the number of models by J, this step re-
sults in a huge weight matrix and bias vector which haveW ·J rows,

Table 1. English text resources collected within the Quaero project,
and count-based (KN4) LM perplexities (PPL) measured on the de-
velopment set. cna:Central News Agency of Taiwan, English Service.
ltw:Los Angeles Times/Washington Post Newswire Service, nyt:New
York Times Newswire Service

corpus #words interp. KN4
weights PPL

Giga-
word

cna 25M 0.0003 858.0
ltw 221M 0.03 278.2
nyt 1.1B 0.08 267.3

IWSLT lmtrain 2M 0.03 299.5
2013 train 2M 0.06 312.9
WMT news-crawl 914M 0.02 49692012

Quaero

train10 - blog 149M 0.11 218.8
train10 - news 153M 0.10 217.3

train11 2M 0.37 215.8
The Independent 508M 0.17 211.6
TED 2M 0.03 302.3

Interpolation 3.1B 132.7

e.g. 128k·11 in this study. Second, an additional linear layer – the
interpolation layer – should be inserted before the softmax func-
tion. During the forward, the output vector of the merged linear
layer should be re-interpreted as a matrix in column-major format
with J rows and W columns. Thus, the interpolation layer should
perform W times non-overlapping convolution. Updating only the
interpolation weights, the optimization is a convex problem, and the
resulting model cannot perform worse than the best fitting domain
output. Due to the limited number of interpolation parameters the
optimization can be carried out on a small e.g. development set sim-
ilar to linear interpolation.

4. EXPERIMENTAL SETUPS

Our experimental investigation on multi-domain feed-forward
NNLM was performed on an English broadcast news and con-
versation speech recognition task from the Quaero project [17].

4.1. Acoustic models (AM)
For acoustic modeling, a hybrid 12-layer rectified linear unit (ReLU)
activation based feed-forward multi layer perceptron (MLP) NN was
trained [18, 19]. The network was built on vocal tract length nor-
malized 50-dimensional Gammatone features [20]. In the first step,
the AM was multilingually trained on 4 languages (French, English,
German, Polish), and the amount of data totals up to 800 hours of
speech. This initial training step, except for the model size, is analo-
gous to [21], see there for more details. The multilingually boosted
acoustic model was then fine-tuned with the 250 hours of available
English target data. In the final step, the model was sharpened by the
application of the minimum phone error sequence level discrimina-
tive training criterion [22]. The obtained model corresponds to our
current best speaker independent AM trained for this task.

4.2. Baseline language models (LM)
Table 1 summarizes the different resources collected within the
Quaero project to train the LM for English ASR. The corpora used
in this study are the same as in [16]. Besides the transcription
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Table 2. Optimizing the length of history for feed-forward MLP LM
on the 50M corpus. Perplexity measured on development set.

N-gram 5 10 20 30
PPL 142.9 126.0 117.4 118.3

of acoustic data (train11), a substantial amount of text data was
downloaded from web blogs and news [23]. After the clean-up and
normalization of the text data, the lexicon was limited to the most
frequent 150k words. On each text source, a 4-gram Kneser-Ney-
smoothed LM was estimated (KN4). The LMs were then linearly
interpolated minimizing the perplexity (PPL) on the development
set. The development and the two test sets corresponds to the 2012,
2013, and 2011 ASR evaluation sets, respectively. Table 1 shows the
individual and the interpolated model perplexities as well as the lin-
ear interpolation weight for each domain-specific model. The very
high perplexity on WMT2012 is due to the mismatch in vocabulary
coverage between the development data and this sub-corpus. Word-
level perplexities are very heterogeneous for this sub-LM: better
than the Quaero-train11 for some words but very bad for others.

4.3. Neural network LMs

Initial experiments were carried out on a smaller corpus which con-
tained 50M running words. It was generated by including the in-
domain data first (train11, 2M running words), and then adding more
data from the second most relevant text source, as explained in [16].

During the NNLM training with the 50M corpus, the best match-
ing 2M subset was placed at the end of the epoch. Instead of the full
lexicon, only words occurring in the 50M corpus were considered
for NNLM, in accordance with [16]. This resulted in a lexicon size
of 128k. The 2M and 50M subsets were also used to fine-tune our
NNLMs with in-domain data when the models were trained on the
3B corpus.

In this paper only ReLU activation units are used in the MLPs.
Preliminary experiments showed that ReLU allowed larger mini-
batch size, thus faster training, without any degradation in perplex-
ity. In our network, we differentiate between three types of bottle-
neck (BN) layer. The input BN layer corresponds to the projection
layer shared between the spliced sparse one-of-c vectors (LM his-
tory). In acoustic modeling this corresponds to a time-delay neural
network layer [24]. Between-hidden-layer BN is applied to low-rank
factorize the output of the hidden layers. In this study, the feed-
forward NNLMs are trained without word classes, the posteriors of
128k words were estimated directly: an output BN was inserted be-
fore the last weight matrix to reduce the computation time. Although
in acoustic modeling momentum and l2 regularization terms are cru-
cial for better generalization with ReLUs, for MLP based language
modeling we did not observe severe overfitting by discarding them.

Estimating word posterior probability given the fixed length of
history, the feed-forward NNLMs were optimized w.r.t. the cross-
entropy criterion using stochastic gradient descent. In order to adjust
the learning rate, the development set was used for cross validation
(CV). Our conservative newbob strategy did not start to halve the
learning rate until the CE objective function (log. perplexity) im-
proved at least by 0.001. Furthermore, the ramping state was reset
if the improvement was larger than 0.001. The training was stopped
when the CE improvement was less than 0.0001 three times after
each other in ramping state.

During model training or fine-tuning on the 2M or 50M sub-
set, the learning rate scheduling was called epoch-wise. In order

to train models on 3B running words, cross-validation was carried
out after training on a shifting subset of 100M samples in the initial
steps. Whenever the learning rate was reduced, the size of this subset
was increased by a factor of 1.17. Performing 30 iterations within 3
epochs, the subset size thus was increased exponentially up to 300M
training samples.

The training of our randomly initialized larger model (see Sec-
tion 5.1) on 50M running words took about 3.5 days on a GTX980
GPU. The model training on 3B samples converged in 20 days us-
ing a single GPU. The training time between the multi-domain and
classic MLP training does not differ substantially. The log-linear in-
terpolation of the multi-domain models finished within 5 hours. The
fine-tuning with the 50M corpus was always initiated with reduced
learning rate and needed 1.5 day until convergence.

5. EXPERIMENTAL RESULTS

5.1. Optimizing the feed-forward MLP

A set of experiments was carried out to optimize the structure of our
feed-forward NNLM, and to re-investigate also the potential of long
context and depth with MLPs. To obtain the optimal context length,
the following MLP structure was trained: the projection, between-
hidden, and before-output BN layers contained 64, 256, and 128
nodes respectively. The MLP had 3 non-BN hidden layers with 1024
units each. The neural network was trained on the smaller, 50M
matched training set. As can be seen in Table 2, training a 20-gram
MLP LM resulted in the lowest perplexity on the development set.

In the second set of experiments, the structure of the MLP was
optimized. As Rows 1, 2 and 6, 8 of Table 3 show, increasing the
depth improved the perplexity about 1% relative. Increasing the
depth up to 5 layers did not result in further gain (Rows 8, 9). Dou-
bling the projection and output BN layer size resulted in over 2 point
absolute PPL improvement (Rows 1, 3). Increasing the non-BN size
showed another 1 point PPL gain (Rows 5, 6 and 7, 8). Discrim-
inative pre-training (DPT) [25] was also found useful (Row 3, 5).
An increased mini-batch size of 128 frames degraded the LM per-
formance measurably (Row 3, 4). In summary, optimization of the
MLP structure and context resulted in improved feed-forward LM
performance, compared to previously reported results on this task.
In [16], PPLs of 130.9 and 100.5 were reported for feed-forward NN
and LSTM-RNN, respectively. It should also be noted that our model
had only 58M parameters in contrast to the 160M of the LSTM-
RNN, and the 63M n-grams of the 4-gram count model.

Table 3. Parameter optimization of 20-gram feed-forward MLP LM
on the 50M corpus. Perplexity measured on development set without
interpolation with count model.

non-BN BN size DPT batch PPL row# size proj. btw.hidden output size
3

1024

64

256

128
- 64

117.4 1
5 116.2 2

3

128 256

114.7 3
128 117.0 4

+ 64

113.7 5
2048 112.1 6

4 1024 111.5 7

2048 110.5 8
5 110.7 9
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Table 5. Quaero English speech recognition results. WER(%) are reported for Viterbi (Vi.) and confusion network decoding (CN).
Language Model Eval12 (dev) Eval13 Eval11

PPL Vi. CN PPL Vi. CN PPL Vi. CN
KN4 132.7 12.6 12.3 131.1 10.7 10.5 133.4 15.4 15.0
+ 50M FFNN 96.5 11.4 11.1 97.2 9.6 9.5 95.0 14.2 13.8
+ 3B, fine-tune 89.6 10.9 10.7 90.6 9.4 9.1 88.0 13.7 13.4
+ Multi-domain,log-lin,fine-tune 88.5 10.8 10.6 89.9 9.3 9.1 87.0 13.7 13.5
+ LSTM 91.6 10.9 10.8 92.0 9.3 9.0 91.0 13.7 13.5

Table 4. Effect of training the models on more data, fine-tuning
with matched data, and initialization with log-linear interpolated
and multi-domain style trained model. Perplexities reported after
multi-domain training without interpolation corresponds to the use
of the best output.

LM multi log.lin fine tuning PPL rowdomain interp. 50M 2M

50M 110.5 1
× 109.0 2

3B

129.0 3
× 96.6 4

× 101.4 5
× × 96.2 6

× 133.1 7
× × × 95.7 8
× × 117.6 9
× × × × 94.3 10

5.2. Training MLP-LMs on multi-domain data

The optimized MLP was then used to investigate the multi-domain
training of NNLMs. First, a LM without domain dependent output
was built. As can be seen in Table 4, training the model on more
but mismatched data did not help alone (Rows 1, 3). However, fine-
tuning on a small, 2M running words, set of domain-specific data
led to over 30 point absolute PPL improvement (Rows 1, 4). The
results indicate that the MLP LM training is a difficult optimization
problem and mismatched data can help to avoid local optima, see e.g.
results in Section 5.1. Although the 50M set contained the 2M (see
Section 4.3) subset, for a fair comparison the 50M model was also
tuned with multiple epochs on the 2M set. This step improved the
50M model by 1% relative (Rows 1, 2). Fine-tuning the 3B model
on 50M and 2M sets in a fixed sequential order led only to slightly
better perplexities (Rows 4, 6).

Switching on the domain dependent layer, we obtained 11 dif-
ferent perplexities. Perplexity measured on the best fitting output
(corresponding to Quaero - The Independent) is shown in Row 7,
and after fine-tuning in Row 8. Performing the log-linear interpo-
lation of the outputs improved the result over the 3B baseline sig-
nificantly (Rows 3, 9), but it still did not reach the performance of
the in-domain 50M model. However, we obtained the best model
if the log-linearly interpolated model was used as initialization in
the fine-tuning step (Row 10). The log-linear interpolation was also
compared with linear interpolation. The later one performed slightly
better achieving a PPL of 114. Nevertheless, fine-tuning of such a
model is more sophisticated, and the multi-domain weights cannot
be merged into a simple NNLM, the interpolated model ends up in
an increased number of parameters compared to the other 3B-word
models in Rows 3 or 10. In summary, with the help of multi-domain
data our MLP-LM achieved 94.3 PPL, 15% rel. improvement over

the 50M in-domain model. The best result in Tabel 4 shows 6% rel-
ative improvement – with much less parameters – over the previous
best PPL result of 100.5 achieved by a LSTM-LM in [16].

In the final experiment our feed-forward LMs were tested in
broadcast news and conversations speech recognition task. We used
the RASR [26] software for lattice extraction, Viterbi (Vi) and confu-
sion network (CN) decoding. Applying the traceback approximation
of [27], lattices were rescored by the rwthlm [28] toolkit. Analo-
gously to [16] the search space is initially generated with the count
LM trained on 3B running words. Due to the improved acoustic
model the count model baseline result is already as good as the best
results reported in [16]. The lattice rescoring was carried out with
neural network LM linearly interpolated with the large count LM
in all cases. Table 5 shows perplexity (PPL) and word error rate
(WER) results on three different evaluation corpora of the Quaero
project (Eval11, Eval12, Eval13). As in [16], the Eval12 set was
used as development set to tune all the interpolation weights, LM
scale, and also as CV set during NNLM training. Results are also re-
ported on the Eval11 set in order to allow WER comparison with our
previous works made on acoustic modeling, e.g. [29, 21]. However,
in this work, an unpruned count LM was directly used for decoding
accounting for ∼0.3% absolute WER improvement over the pruned
model.

As can be seen, our best 50M feed-forward neural network
(FFNN) LM is only 5 points in PPL (rel. 5%) behind the LSTM
model. Training an FFNN model on more multi-domain data and
then fine-tuning with in-domain data resulted in significantly lower
WER. Our best FFNN is 2-4 points in PPL better than our previous
best LSTM. However, this improvement did not always carry over
into significantly better recognition results after CN decoding.

6. CONCLUSIONS
In this work, feed-forward deep neural network LMs are shown to
obtain significantly better performance than previously reported.
Further gain was achieved by avoiding local optima using a large
amount of mismatched out-of-domain text resources to initialize the
model before fine-tuning on matched data. We also demonstrated
that multi-domain training and log-linear interpolation of domain-
specific models could result in a single neural network model al-
lowing even better initialization before adaptation. Systematic
application of these techniques led to high performing feed-forward
NNLM showing similar or better results than our current best LSTM
models.

In future work, multi-domain training will also be repeated with
LSTMs. For better comparison with our proposed FFNN models,
further investigation on LSTM with full-output and experiments with
larger data sets are also necessary. Aiming at better log-linear inter-
polation of NNLMs, the training of multi-domain layers on the out-
put of hidden activations of in-domain sub-networks might also be
considered.
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HLT, Montréal, Canada, Jun. 2012, pp. 20–28.

[16] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedfor-
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[28] M. Sundermeyer, R. Schlüter, and H. Ney, “rwthlm – The
RWTH Aachen University neural network language modeling
toolkit,” in Proc. Interspeech, Singapore, Sep. 2014, pp. 2093–
2097.

[29] S. Wiesler, A. Richard, R. Schlüter, and H. Ney, “Mean-
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