978-1-4799-9988-0/16/$31.00 ©2016 IEEE

CUED-RNNLM — AN OPEN-SOURCE TOOLKIT FOR EFFICIENT TRAINING
AND EVALUATION OF RECURRENT NEURAL NETWORK LANGUAGE MODELS

X. Chen, X. Liu, Y. Qian, M.J.F. Gales, P.C. Woodland

Cambridge University Engineering Dept, Trumpington Santridge, CB2 1PZ, U.K.
Email: {xc257, x| 207, yq236, nj f g, pcw}@ng. cam ac. uk

ABSTRACT

In recent years, recurrent neural network language modelghen processing large amounts of data.

However, training RNNLMs is computationally very demand-
ing and the resulting slow training speed limits the use ofNRNIs
In our previous work,

(RNNLMs) have become increasingly popular for a range of apRNNLMs were efficiently trained on GPUs using a novel sen-

plications including speech recognition. However, théntrey of
RNNLMs is computationally expensive, which limits the gtign

tence splicing bunch mode parallelisation algorithm. Angigant
speedup of 27 times compared to Mikolov’s RNNLM toolkit [8r

of data, and size of network, that can be used. In order ty full hing on a CPU was obtained [9]. In order to reduce the perfooma

exploit the power of RNNLMs, efficient training implementats
are required. This paper introduces an open-source tpdheét
CUED- RNNLM toolkit, which supports efficient GPU-based train-
ing of RNNLMs. RNNLM training with a large number of word
level output targets is supported, in contrast to existgajst which
used class-based output-targets. Support fot N-best tirntaased
rescoring of both HTK and Kaldi format lattices is includéh ex-
ample of building and evaluating RNNLMs with this toolkit pse-
sented for a Kaldi based speech recognition system usingNhe
corpus. All necessary resources including the source adoley-
mentation and recipe are available onfine

sensitivity of word to class assignment [10] and improve effe
ciency of bunch mode training, RNNLMs with a full output laye
(FRNNLM) were employed [9], in contrast to the widely usedsd
based RNNLM (CRNNLM) [3].

The softmax normalisation at the output layer heavily intpac
the evaluation speed of FRNNLMs, especially when modelknge
vocabularies, that are perhaps number hundreds of thosisaind
words. In order to solve this problem, two improved RNNLMrra
ing criteria have been proposed: variance regularisétign[and
noise contrastive estimation[12]. Both of these metholdsvead con-
stant, history independent normalisation term to be usedltlzere-

Index Terms: language model, recurrent neural network, speechore considerably increase the RNNLM evaluation speed oRE.C

recognition, GPU, open-source toolkit

1. INTRODUCTION

Language models are crucial components in many speech and |
guage processing applications, such as speech recogaittbma-
chine translation. Due to the good performance and effidiepte-
mentation ofn-gram LMs, they have been the dominant languag
modelling approach for several decades. However, theréware
well know issues associated witihgram LMs. The first issue is
data sparsity. Sophisticated smoothing techniques argreebjfor
robust parameter estimation [1, 2]. The second issue ligsin
order Markov assumption. The predicted word probabilitprigy
dependent on the preceding- 1 words, while longer range context
dependency is ignored.

a

e

This paper presents theUED-RNNLM toolkit , which in-
cludes the above efficient implementation of GPU based RNNLM
training and improved training criteria. This rest of thiaper is
organised as follows. Section 2 gives a brief review of RNNLM
Section 3 discusses three existing open-source toolkitsdming
neural network language models. The efficient training|uateon
and implementation of th€UED- RNNLMtoolkit are presented in
Sections 4, 5 and 6 respectively. Experiments on a Kaldicpee
recognition system constructed on the AMI corpus are ptesen
Section 7. Section 8 draws conclusions and discusses futurie

2. RECURRENT NEURAL NETWORK LMS

RNNLMs [13] represent the full, non-truncated histoly =<
w;—1,...,w1 > for word w; using a 1-ofk encoding of the pre-

Recurrent neural network language models (RNNLMs) project ioys wordw,_; and a continuous vectar,_» for the remaining

each word into a compact continuous vector space which usss a
atively small set of parameters, and uses recurrent cannscto
model long range context dependencies. Hence, RNNLMs geovi
a solution for the two key:-gram issues. Furthermore, RNNLMs
have been shown to produce significant improvements oxgnam
LMs for speech recognition tasks, and this has resulteddin tise
for a wide range of applications [3, 4, 5, 6, 7].

context. An out-of-vocabulary (OOV) input node can also becu
to represent any input word not in the chosen recognitioabolary.
The topology of the recurrent neural network used to compiMe
probabilitiesPrn (w;|wi—1, vi—2) consists of three layers. The full
history vector, obtained by concatenating , andv;_», is fed into
the input layer. The hidden layer compresses the informdtiam
these two inputs and computes a new representation using a
sigmoid activation to achieve non-linearity. This is theasged to

Xie Chen is supported by Toshiba Research Europe Ltd, Camthe gutput layer to produce normalised RNNLM probabilitising

bridge Research Lab.
also supported by EPSRC grant EP/1031022/1 (Natural
Technology). Supporting data for this paper is available tla
https://www.repository.cam.ac.uk/handle/1810/2538@th repository.
http://mi.eng.cam.ac.uk/projects/cued-rnnim/

6000

The research leading to these resudts w
Speec

softmax activation, as well as recursively fed back in®itiput
ayer as the “future” remaining history to compute the LM Ipabil-
ity for the following word Pann (wi41|wi, vi—1).
An example RNNLM architecture with an unclustered, full-out

ICASSP 2016

Input layer

Wi —

e X X

)
"'7

oov inpul‘node 3

)

Vi g

)

-2
4
1
1
AY

N

linear

el |

Hidden layer Output layer
softmax
L]
sigmoid ®
L) L)

L]
L]
Vi—1

AY
\
1

. 1
Vi-1,

,® eoe

4 00S out;‘)ut node
’

-

— " — = Praun(wi|wi—1,vi—2)

Fig. 1. Afull output layer RNNLM with OOV and OOS nodes.

put layer is shown in Fig. 1. RNNLMs can be trained using bac

propagation through time (BPTT) [14], where the error isparo
gated through the recurrent connections back for a spedcifither
of time steps, for example, 4 or 5 [3]. To reduce the compomnati
cost, a shortlist [15, 16] can be used to limit the output tapethe
most frequent words. To reduce the bias to in-shortlist wadr-
ing RNNLM training and improve robustness, an additionalencs
added at the output layer to model the probability mass ofobut
shortlist (OOS) words [17, 18, 19].
Training of full output layer RNNLMs is computationally ex-
pensive. One popular solution is to use class based RNNLM#&{3
dividual words in the output layer vocabulary are assigoedasses.

As the number of classes and number of words within eachedass

are both significantly smaller than the output layer vocatyyiclass ’ > ; .
based RNNLMs can be efficiently trained on CPUs. However, thé!'SO used. The toolkit features a more efficient implemeriaof

use of class based RNNLM not only introduces performancsisen

tivity to word classing, it also difficult to parallel the tréng of ir-
regular sized class specific weight matrices for furtheekation.
In our previous work, full output layer RNNLMs were adoptetia
trained efficiently on GPUs in bunch (or minibatch) mode [14, 9]
that processes multiple training sentences in parallele Spliced
sentence bunch technique was used to minimise the synehtmm
overhead between bunch streams introduced by sentenck iemg
ation. The idea of spliced sentence bunch is illustratedgnre 2.
Multiple sentences are spliced into one of tNestreams ¥V is the
bunch size). During training, an input word vector of dimensV CUED- RNNLMincludes FRNNLM training, evaluation and text gen-
is formed by taking one word from each stream. The target worcration via sampling. Both training and sampling require tke of
vector is formed by taking the next word in each stream.

Input
words

Target
words
bunch

Sent 0

SentN

Sent M-N-2

Stream 0

| <s> . </s> | <s> .. </s> |

| <s>.. </s> NULLs

Sent 1

Sent N+1

Sent M-N-1

Stream 1 | <s>..</s>

| <s> ... </s> |

. | <s> .. </s>

Sent N-1

Sent 2N-1

Sent M-1

Stream N-1 | <s> . </s> |

<s>..</s> |

| <s>..</s> | NULLs

Fig. 2. RNNLM training with spliced sentence bunch

time

6001

In state-of-the-art ASR systems, RNNLMs are often linearly
terpolated withn-gram LMs to obtain both good context coverage
and strong generalisation [13, 15, 17, 18]. The interpotatieight
A could be optimised via EM algorithm on a held-out set. For-sim
plicity, A is kept fixed at 0.5 in this paper. In the above interpolation,
the probability mass of OOS words assigned by the RNNLM com-
ponent is re-distributed with equal probability over all ©@ords
to guarantee a valid probability.

3. TOOLKITS FOR NNLM/RNNLM TRAINING

There are various toolkits which implement recurrent nlened-
works, such as Theafo Torck, TensorFloW, Chaine?, and
CNTK [20]. For language modelling, there are also severahnep
source toolkits specifically for neural network based laaggumodel
training. Three popular toolkits are presented in thisisact

CSLM [21]is an efficient implementation of feedforward neural

khetwork language models. It includes CPU and GPU versiaas th

allow large quantities of training data to be processedgusfficient
parallelisation algorithms and resampling techniques.

RNNLM [8] is probably the first RNNLM toolkit designed
specifically for language modelling. It allows class bas®&NRMs
to be efficiently trained on CPUs using small amounts of date
training speed rapidly reduces as the size of the hidderr iaye
creases [9]. TheéRNNLM toolkit also provided recipes for vari-
ous functions including perplexity evaluation, N-bestcaring and
text generation. Th€UED- RNNLMtoolkit was initially based on
the RNNLMtoolkit and provides similar debugging information and
model format.

RWTHLM [22] provides an implementation of long short-term
memory (LSTM) based RNNLMs and class based output layers are

CPU based RNNLM training. However, similar issues existén r
duced training speed with the increase of hidden layer size.

In this paper, we describe our GPU-based implementation
for efficient RNNLM training of full output layer RNNLMSs:
CUED- RNNLM The CUED- RNNLMtoolkit is implemented in C++,
it is freely available under the BSD license and copyrigbtrfrthe
RNNLMtoolkit.

4. TRAINING IN CUED-RNNLM

a GPU, while model evaluation is performed on a CPU.

4.1. Cross Entropy (CE) Training

The conventional objective function used in RNNLM trainiigy
based on cross entropy (CE),

JE@G) = — L %1 B ;
= n Prnn (wi|hi) 1)

N, 4

where N,, is the number of words in training corpus. RNNLMs
with full output layer are trained on a GPU efficiently usingnich
(i.e. minibatch) mode[9]. However, the softmax layer inpuitlayer

2https://github.com/gwtaylor/theano-rnn

Shttps://github.com/tomsercu/lstm
“https://github.com/tensorflow/tensorflow/tree/maseagorflow/models/rnn/ptb
Shttps://github.com/pfnet/chainer/tree/master/exasiptb

requires the computation of normalisation term, as showEdn

(2), wherea; is the weight vector associated with wotg. The

computation of normalisation tert; is very expensive during both

training and test time.

6”311%

> el Z
One solution to the above problem is to learn a constanpyist

independent softmax normalisation term during RNNLM tirzgp If

the normalisation tern; could be approximated as constdntun-

nomalised RNNLM probabilities in Eqn (3) could be used tojmie

a large speed up at test time.

T
eli—1%

Prnn (wilhi) =

@

T
elVi—1%i

5 @®

Using this idea, two improved training criteria have beerplian
mented inCUED- RNNLM variance regularisation (VR) and noise
contrastive estimation (NCE).

Prnn (wilhi) =

4.2. Variance Regularisation (VR)

Variance regularisation explicitly adds the variance @& tormal-
isation term into the standard CE objective function [11]. ZBhe
associated objective function is given by

IO = IO + D5 Yo (n(Z) -)Y @

5. MODEL EVALUATION IN CUED-RNNLM

The test set perplexity (PPL) and word error rate (WER) aegl tis
evaluate the performance of language models for speecgmigiom
tasks. TheCUED- RNNLMtoolkit provides functions for computing
perplexity, N-best rescoring and lattice rescoring.

5.1. Perplexity Calculation

Perplexity can be calculated using RNNLMs alone, or lineart
terpolated withn-gram LMs. Calculating the exact perplexity for
full output RNNLMs using normalised probabilities is contgtion-
ally inefficient using a CPU: adding GPU perplexity calcidas is
future work.

5.2. N-best Rescoring

N-best lists can be generated from word lattices using elge t
SRILM toolkit [28]. Then sentence level log likelihoods withe
language model score computed from an RNNLM can be calallate
and the N-best lists reranked. Note that the un-nomalisglonility

in Eqn 3 can be applied when using VR or NCE trained RNNLMs.

5.3. Lattice Rescoring

Lattice rescoring using RNNLMs is also supported. Modedinid
using CUED-RNNLMs can be applied using an extension added to
the HTK 3.5 [25] lattice processing tool HLRescore. Theidatt
rescoring extension is also available as a patch to HTK 3Mid a

whereln Z is the mean of log normalisation term. The second termygnyversion tool, Kaldi [26] format lattices are also sufipdr

added to the CE objective function given in Eqn. (1) modets th

variance of the log normalisation term. The parameté used to
tune the effect of the variance term against the standardi@Eion.
At test time, the RNNLM output probabilities can be approated
by the un-nomalised probabilities in Eqn (3).

4.3. Noise Contrastive Estimation (NCE)

In NCE training, each word in the training corpus is assunoeiet
generated by two different distributions [24]. One is datribu-
tion, which is the RNNLM, and the other is noise distributiarfere
unigram is normally used. The objective function is to disanate
these two distributions over the training data and a groupaof
domly generated noise samples. This is given by

Nu

3 (1n P(CR™ = 1jw;, hy)

i=1

1

NCE

k
+> WmP(Ch, | = 1|wi,j,hi)> ®)

j=1

wherew; is theith target wordyp; ; is thejth noise word generated
for word w;, andk is the number of noise samples?(Ci"N =
1|ws, h;) is the posterior probability of word; is generated by the
RNNLM, and P(Cy, , = 1, hi) the posterior probability of
wordw;_; is generated by a noise distribution.

During NCE training, the variance of the normalisation te&Zm
can be implicitly constrained to be constant. The trainiracpdure
only relates to the target word akdsamples in output layer, instead
of the whole output layer. Hence, the output layer comporei
cost is no longer sensitive to vocabulary size and is redsigdf-
icantly. In common with variance regularisation, the umaadised
probabilities in Eqn. (3) can be used at test time. Impleatént
details can be found in [12].

6002

6. OTHER FEATURES

An RNNLM can be used to generate a large quantities of texts by
sampling [27, 29]. Am-gram LM can be then trained on the gener-
ated text which is interpolated with a baseline LM. The rgsgILM
can be applied directly for first-pass decoding and/ordattescor-
ing as an approximation to the original RNNLM.

There are several other featuresGWED- RNNLM RNNLMs
with more than one hidden layer are supported. Currently, the
first hidden layer is allowed to have recurrent connectioAddi-
tional values can be appended to the input layer, such as fiegi
tures [30]. Both sentence independent and dependent maide tr
ing of RNNLMs are implemented. In sentence independent mode
RNNLM training, the history vectop;_» in input layer is reset to
an initial value (e.g. 0.1) at the beginning of each senterfeer
sentence dependent RNNLM training, the sentence bounslprpi
cessed as a normal word without resetting the history. Seatm-
dependent RNNLM training is used by default.

In many applications, the training data is from several sesir
The ordering of training data presented in RNNLM training s&y-
nificantly impact performance [31]. For good performanceiren
domain test data, it is advisable is to present the out-afap data
to the network first during RNNLM training, before the moregoion-
tantin domain training data is processed. For this reabkeriraining
data is not randomly shuffled during training. It is therefoecom-
mended that the sentence order is randomised for each swiutat
as a pre-processing step, while keeping the order of dataesau

The toolkit requires no other third-party libraries exctiet stan-
dard NVIDIA CUDA library for GPU based computation. The
debugging information and output is similar to those usedhsy
RNNLMtoolkit [8]. A detailed description of the command options
can be found online in the toolkit documentation.

7. EXPERIMENTS respectively were found to give comparable performanceordier
to obtain stable convergence, the NCE based training redtwo
Experiments are conducted on the AMI meeting corpus [32y&be more epochs than the CE baseline.

uated the performance of different types of RNNLM in a speech

recognition context. In total 78 hours of speech was usedanstic Train PPL WER
model training consisting of about 1M word of acoustic t@ipion Crit dev [eval || dev | eval
(including sentence start and end). In addition eight megstivere
kept from the training set and used as the development anhsktss CE 67.5] 639) 22.1| 224
A Kaldi acoustic model training recipe featuring sequemaant VR 68.01 64.4) 22.1) 224
g recip g sed NCE || 685 | 65.1 | 22.1| 22.4

ing [33] was applied for deep neural network (DNN) training.
FMLLR transformed MFCC feature was used as input and 4000
clustered states (senones) were used as clustered as Tdrg&NN
was trained with 6 hidden layers, each layer with 2048 hiduztes. Table 3 presents the training and evaluation speed of RNNLMs
The first part of the Fisher corpus of 13M words was also used t\ single process on a computer with dual Intel Xeon E5-2680
further improve language modelling performance. A 49k wded 2 5GHz processors was used for CPU-based CRNNLM trainidg an
coding vocabulary was used. A 33k RNNLM input vocabulary wasgygjuation. The NVIDIA GeForce GTX TITAN GPU was used
constructed from the intersection between the decodingludery for training FRNNLMs. As expected, FRNNLM training on GPU
and all words present in the LM training data. The 22k most fre js mych faster than CRNNLM training on CPU and NCE training
quent words were then selected as output vocabulary. TRBRT provided a further speedup. FRNNLMs trained using the VR and

gorithm is used in RNNLM training with the error back-propéfl NCE criteria were also found to be more than 2.5 times faistam t
for 5 previous words. All RNNLMs in this paper use one hidden cRNNLMs at test time.

layer. On average 10 epochs of training are required to reaaver-

Table 2 FRNNLMs trained with various criteria

gence. All LMs presented in this section were trained on thra-c RNN | Train || Train(GPU) | Test (CPU)

bined (AMI+Fisher) 14M word training set. Experimental uks Type | Crit || Speed(kw/s)| Speed(kw/s)

using only the 1M word AMI transcriptions can be found in thoe< CRNN | CE 0.45 6.0

umentation online. CE 115 0.32
The first experiment is to evaluate the performance of RNNLMs ERNN | VR 11'5 1'5 3

A pruned 3-gram LM was used in the first-pass decoding and fol- NCE 20:5 15:3

lowed by lattice rescoring using an un-pruned 4-gram LM.idgr
RNNLM training, the AMI corpus (1M) was presented after the
Fisher data (13M). RNNLMs with 512 hidden nodes were trained
using the cross entropy criterion. Table 1 shows the peidona
of RNNLMs trained by both th&NNLMand CUED- RNNLMtoolk-
its. RNNLMs give significant perplexity and word error ra®ER)
improvements over the baseline 4-gram LM. The full outpyeta
RNNLM trained byCUED- RNNL Mtoolkit slightly outperformed the
class based model trained wiRNNLM Rescoring lattices and 50-
best lists gave comparable 1-best (Viterbi) performanca.addi-
tional WER reduction of 0.2% absolute was obtained by coafus
network (CN) [34] decoding using RNNLM rescored latticesiler
CN decoding using the rescored 50-best lists gave no imprene

Table 3. Training and testing speed of RNNLMs

The training speed heavily depends on the hidden layer size.
Table 4 compares the training speed using a varying number of
hidden nodes witiRNNLMand CUED- RNNLM It can be seen that
CRNNLMs are efficient when a small sized hidden layer is used.
However, the training speed decreases rapidly as the hidgen
size increases. When the hidden layer size is increased1f2@nto
2048 nodes, the number of words processed per second ismdedre
by a factor of 340 to 12 words for CRNNLM. In contrast, the iirai
ing speed of FRNNLMs were found less sensitive to such iserea
in hidden layer size. This shows the superior scaling to agkwsize
of CUED- RNNLM

LM Re PPL WER Toolkit # Hidden node
Type score || dev | eval || dev | eval 128 | 256 | 512 | 1024 | 2048
39 - 84.5| 79.6 || 24.2 | 24.7 RNNLM 21| 1.7 | 0.45] 0.095] 0.012
49 lattice || 80.3 | 76.3 || 23.7 | 24.1 CUED-RNNLM || 19.8 | 14.2 | 115| 6.6 | 3.7
+CRNN lattice 705 | 675 224 | 225
5|0 peSt ;;3 ;;g Table 4. Train Speed (kw/s) against number of hidden nodes
attice . .
FERNN | 50 pest || 998 670 | 202 | 225

)) 8. CONCLUSION AND FUTURE WORK
Table 1. Performance of CRNNLMs (trained witRNNLM) and

FRNNLMs (trained withCUED- RNNLM. We have introduced th@UED- RNNL Mtoolkit which provides an ef-

The next experiment investigates the performance of FRNBILM ficient GPU-based implementation for training RNNLMs. RNM&.
trained using various criteria when using 50-best resgorithe ~ With full output layers are trained using a variance regséion or
Fisher and AMI corpora were shuffled separately before begmg ~ NOise contrastive estimation approach on a GPU and thereeffic
catenated into single training data file. Shuffling gave allsraduc- ~ €valuated on CPU. There are several features that are plaore
tion of WER®. The performance of VR and NCE trained RNNLMs added in future. These include long short term memory (LSTM)

are shown in Table 2. RNNLMs trained using CE, VR and NCEPased RNNLM [5], and also supporting more flexible RNNLM
model structures. All resources related to this toolkit bardown-

loaded from http://mi.eng.cam.ac.uk/projects/cuedmin

6No improvements obtained on CRNNLMs using data shuffling.

6003

(1]

(2]

3

—_

4

—_

(5]

[6

—_

(7]

(8]

9]

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

9. REFERENCES

R. Kneser and H. Ney, “Improved backing-off for n-grama
guage modeling”Proc. ICASSP, 1995.

S. F. Chen and J. T. Goodman. “An empirical study of smeoth
ing techniques for language modelin@omputer Speech and
Language, Vol. 13, Issue 4, pp. 359-394, 1999.

(20]

T. Mikolov, S. Kombrink, L. Burget, J.H. Cernocky, and S. (21]

Khudanpur, “Extensions of recurrent neural network laggua
model”, Proc. ICASSP, 2011.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J.
Makhoul, “Fast and robust neural network joint models for
statistical machine translationissociation for Computational
Linguistics, 2014.

M. Sundermeyer, R. Schluter, and H. Ney, “LSTM neuratne
works for language modeling'Rroc. Interspeech, 2012.

W.D. Mulder, S. Bethard, and M.F. Moens, “A survey on the
application of recurrent neural networks to statisticablaage
modeling”, Computer Speech & Language, vol. 30, no. 1, pp.
61-98, 2015.

S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget, “Re-
current neural network based language modeling in meeting
recognition.,” Proc. Interspeech, 2011.

T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cer-
nocky, “Recurrent neural network language modeling taglki
Proc. ASRU Workshop, 2011.

[26

(22]

(23]

(24]

(25]

]

X. Chen, Y. Wang, X. Liu, M.J.F. Gales, and P.C. Woodland, [27]

“Efficient training of recurrent neural network languagedno
els using spliced sentence buncRtoc. Interspeech, 2014.

Geoffrey Zweig and Konstantin Makarychev, “Speed tagu
ization and optimality in word classingRroc. ICASSP, 2013.

X. Chen, X. Liu, M.J.F. Gales, and P.C. Woodland, “Impro

(28]

ing the training and evaluation efficiency of recurrent aéur [29]

network language modelsRroc. ICASSP, 2015.

X. Chen, X. Liu, M.J.F. Gales, and P.C. Woodland, “Reent
neural network language model training with noise conirast
estimation for speech recognitionProc. ICASSP, 2015.

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and &hu-
danpur, “Recurrent neural network based language model”,
Proc. ISCA Interspeech, 2010.

D.E. Rumelhart, G.E. Hinton, and R.J. Williamd,earning
representations by back-propagating errors, MIT Press, Cam-
bridge, MA, USA, 1988.

H. Schwenk, “Continuous space language modélsjhputer
Fpeech & Language, vol. 21, no. 3, pp. 492-518, 2007.

A. Emami and L. Mangu, “Empirical study of neural netkor
language models for Arabic speech recognitioRfpc. ASRU
Workshop, 2007.

J. Park, X. Liu, M.J.F. Gales, and P.C. Woodland, “Inyad
neural network based language modelling and adaptation”,
Proc. Interspeech, 2010.

H. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon /-
tured output layer neural network language models for dpeec
recognition”, |EEE Trans Audio, Speech, and Language Pro-
cessing, vol. 21, no. 1, pp. 197-206, 2013.

6004

[32

(30]

(31]

(33]

(34]

[19] X. Liu, Y. Wang, X. Chen, M.J.F. Gales, and P.C. Woodland

“Efficient lattice rescoring using recurrent neural netiiam-
guage models"Proc. ICASSP, 2014.

D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guent
O. Kuchaiev, Y. Zhang, F. Seide, H. Wang, et al., “An introduc
tion to computational networks and the computational netwo
toolkit”, Tech. Rep. MSR, http://codebox/cntk, 2014.

H. Schwenk, “CSLM-a modular open-source continuowsp
language modeling toolkit.,Proc. Interspeech, 2013.

M. Sundermeyer, R. Schliter, and H. Ney, “rwthim the RwW/
Aachen university neural network language modeling taglki
Proc. Interspeech, 2014.

Y. Shi, M.-Y. Hwang, K. Yao, and M. Larson. “Speed up of
recurrent neural network language models with sentene ind
pendent subsampling stochastic gradient descéntt. Inter-
speech, 2013.

A. Mnih and Y.W. Teh, “A fast and simple algorithm for ina
ing neural probabilistic language model&foc. International
Conference on Machine Learning, 2012.

S. Young, G. Evermann, M.J.F. Gales, T. Hain, D. Kershaw
Liu, G. Moore, J. Odell, D. Ollason, D. Povey, A. Ragni, V.
Valtchev, P.C. Woodland and C. Zhang, “The HTK book (for
HTK 3.5)”, Cambridge University Engineering Department,
2015.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Gleiibe
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J.
Silovsk, G. Stemmer and K. Vesel “The Kaldi speech recogni-
tion toolkit,” Proc. ASRU Workshop, 2011.

A. Deoras, T. Mikolov, S. Kombrink, and K. Church, “Ap-
proximate inference: A sampling based modeling technique t
capture complex dependencies in a language modgkéch
Communication, vol. 55, no. 1, pp. 162-177, 2013.

A. Stolcke, “SRILM-an extensible language modelinglkadt,”
Proc. Interspeech, 2002.

E. Arisoy, S.F. Chen, B. Ramabhadran, and A. Sethy, “Con
verting neural network language models into back-off lagg
models for efficient decoding in automatic speech recaymiti
|IEEE/ACM Trans. Audio, Speech, and Language Processing,
vol. 22, no. 1, pp. 184-192, 2014.

X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M.J.F. €sl
and P.C. Woodland, “Recurrent Neural Network Language
Model Adaptation for Multi-Genre Broadcast Speech Recog-
nition,” Proc. Interspeech, 2015.

Y. Shi, M. Larson, and C.M. Jonker, “K-component reeuntr
neural network language models using curriculum learhing,
Proc. ASRU Workshop, 2013.

I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bourpbkh
Flynn, M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos, M. Kro
nenthal, G. Lathoud, M. Lincoln, A. Lisowska, W. Post, D.
Reidsma, and P. Wellner, “The AMI meeting corpus: A pre-
announcement,Machine learning for multimodal interaction,
pp. 28-39. Springer, 2006.

K. Vesely, A. Ghoshal, L. Burget, and D. Povey, “Seqten
discriminative training of deep neural networksPfoc. Inter-
speech, 2013.

L. Mangu, E. Brill, and A. Stolcke. “Finding consensus i
speech recognition: word error minimization and other iappl
cations of confusion networksComputer Speech and Lan-
guage, 14(4): 373-400, 2000.

