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ABSTRACT

Semantic word embeddings have become increasingly important in
natural language processing tasks over the last few years. This pop-
ularity is due to their ability to easily capture rich semantic informa-
tion through a distributed representation and the availability of fast
and scalable algorithms for learning them from large text corpora.
State-of-the-art neural network language models (NNLMs) used in
automatic speech recognition (ASR) and natural language process-
ing also learn word embeddings optimized to model local N-gram
dependencies given training text but are not optimized to capture
semantic information. We hypothesize that semantic word embed-
dings provide diverse information compared to the word embeddings
learned by NNLMs. We propose novel feedforward NNLM architec-
tures that incorporate semantic word embeddings. We apply the re-
sulting NNLMs to ASR on broadcast news and show improvements
in both perplexity and word error rate.

Index Terms— Word embeddings, neural networks, language
modeling, automatic speech recognition, representation learning.

1. INTRODUCTION AND PRIOR WORK

Recent advances in machine learning have led to the emergence of
continuous distributed vector representations of words compared to
traditional discrete and sparse representations such as one-hot en-
coding and bag of words. These distributed representations are often
derived using algorithms that aim to capture semantic information
from text. Two prominent examples include word2vec [1] and Glove
(global vectors for word representation) [2]. The continuous bag of
word (CBOW) variant of word2vec learns word representations that
best predict the current word in a sentence given the past and future
words. This model takes the average of past and future word repre-
sentations as input to a one hidden layer neural network to predict the
current word. Another variant of the word2vec model, Skip-Gram,
uses the embedding of the current word to predict the neighboring
words.

Glove is similar in spirit to word2vec because it also tries to esti-
mate word embeddings that capture word co-occurrence. However,
Glove achieves this through a bilinear approximation of the word
co-occurrence matrix. Let G denote the V × D matrix containing
D-dimensional word embeddings for V words. Let C be the pair-
wise word co-occurrence matrix whose (i, j)th entry C(i, j) is the
weighted count of the number of times words i and j occur within
a window of length W words. Glove estimates the optimal G and
a V -dimensional bias vector b using the following weighted least
squares optimization problem:

G∗,b∗ = argmin
G,b

V∑
i,j=1

f(C(i, j))
(
G(i)G(j)T + b(i)

+ b(j)− logC(i, j)
)2

, (1)

where G(i) denotes the ith row of G and f is

f(x) = min
{
1,
(
x/xmin

)α}
. (2)

Typical values of α and xmin are 0.75 and 100 respectively. Se-
mantic word embeddings have found applications in several natural
language processing (NLP) tasks including word similarity (anal-
ogy) detection [1,2], named entity recognition [3,4], machine trans-
lation [5–7], text classification [8], and dependency parsing [9].

The recent success of semantic word embeddings in NLP has oc-
curred in parallel with the advent of neural network language models
(NNLMs). Models such as feed-forward NNLMs (FNNLMs), re-
current NNLMs (RNNLMs), and uni-/bi-directional long short-term
memory (LSTM) RNNLMs are used in almost all state-of-the-art
automatic speech recognition (ASR) systems [10–16] in combina-
tion with the traditional N-gram LMs that do not learn a continuous
distributed word representation.

Our key observation is that the word representations learned by
any NNLM are tuned to best predicting the next word in a sentence
because NNLM training uses average sentence log-likelihood as the
objective function. As an example, Table 1 lists top-5 closest words
to five words found using cosine similarity between NNLM embed-
dings trained on broadcast news and Glove embeddings trained on
the Gigaword corpus. We observe that the lists of words closest
to a given word are significantly different for NNLM and Glove.
We thus hypothesize that semantic word embeddings can offer in-
formation diverse to a NNLM. This leads us to the central contri-
bution of this paper - a joint model incorporating semantic words
embeddings with a NNLM. The next section describes our proposed
model. Section 3.1 presents our Glove training setup. Section 3.2
presents ASR experiments using baseline and semantic word em-
bedding FNNLMs. Section 3.3 presents some initial results by ex-
tending the model to RNNLMs and Section 4 concludes the paper.

2. SEMANTIC WORD EMBEDDING NNLM

We first describe the traditional FNNLM from Figure 1 to set the
notation. Let (wi−2,wi−1,wi) be a tuple of three 1-in-V row vec-
tors, where V is the vocabulary size. A FNNLM first converts the
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Table 1. This table shows the top-5 similar words to the words in bold found using cosine similarity on 300-dimensional NNLM and Glove
embeddings. We extracted the NNLM embeddings from a FNNLM trained on a 12M broadcast news data set with a heldout set perplexity
of 144.9, whereas we trained the Glove embeddings on the Gigaword corpus. The differences in the top-5 lists from the two embeddings
highlights their diversity.

Fig. 1. A simple 3-gram FNNLM takes two 1-in-V word history
vectors as input, converts them to their D-dimensional embeddings,
passes them through a feed-forward NN with a K-neuron hidden
layer, and predicts a V -dimensional PDF for the next word.

word history vectors wi−2 and wi−1 to theirD-dimensional contin-
uous representation through multiplication with a V ×D embedding
matrix RH . This forms the input

xi = [wi−2RH wi−1RH ] (3)

to a neural network with one hidden layer. Let

hi = σ(xiW) (4)

be the 1×H vector at the output of the hidden layer and σ denote the
point-wise sigmoid function. The NNLM then multiplies this vector
with a H × V matrix RP and computes the conditional probability
mass function of the next word,

P (wi|wi−2,wi−1) = s(hiRP ) (5)

where s is the V -way soft-max function.
We now describe the semantic word embedding (SWE) FNNLM

architecture. Let G be the V ×DG semantic word embedding matrix
obtained using any algorithm such as word2vec or Glove. The neural
network in Figure 2 incorporates semantic embeddings at two stages
- as new input features to the FNNLM and as additional weights
connecting the hidden to the output layer. The new architecture thus
includes the following two modifications:

Feature concatenation: RG
H = [G RH ] and (6)

Weight expansion: RG
P = [G RT

P ]
T . (7)

Concatenating the embedding matrix G to the word history embed-
ding matrix RH is intuitive and is akin to feature stream combina-
tion. However, we additionally view the weights of the hidden-to-
output layer connections as a word embedding matrix RP . Hence,

we also expand the hidden layer by the semantic embedding size
DG and add new connections between these new hidden neurons
and the output layer with weight matrix GT . Our experiments il-
lustrate that doing both feature concatenation and weight expansion
using the semantic embedding matrix G gives significantly lower
perplexity compared with performing only feature concatenation.

In addition to modifying the NNLM architecture, we also force
the gradients of the log-likelihood training objective function with
respect to the semantic embedding matrix G to be 0. This means that
the pre-trained semantic embeddings are not updated during NNLM
training. First, this prevents the risk of these semantic embeddings
becoming less diverse with respect to RH and RP as training pro-
ceeds. Second, this also keeps the total number of unknown model
parameters only slightly greater than a vanilla NNLM due to a larger
input to hidden layer weight matrix W. Our experiments showed
that updating the semantic embeddings jointly with the NNLM pa-
rameters did not significantly improve held-out perplexity.

Fig. 2. A feedforward 3-gram SWE-FNNLM concatenates the DG-
dimensional Glove semantic embeddings G to the history and pre-
diction word embeddings RH and RP.

3. EXPERIMENTS AND RESULTS

We first briefly present the details of our Glove implementation and
the data set used for training these semantic embeddings.

3.1. Glove Embeddings

We implemented Glove in Theano [17] to take advantage of the
speed-up offered by graphical processing units (GPUs) and used
AdaGrad [18] for stochastic gradient-based mini-batch training. We
trained Glove on the English Gigaword corpus [19] that consists
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of newswire text data collected over several years by the Linguis-
tic Data Consortium at the University of Pennsylvania. The corpus
size was approximately 1.9B word tokens after cleaning and we only
considered the top 413K words in our model. The Gigaword corpus
was a suitable choice because of its focus on news domain data in-
stead of generic data sets such as Wikipedia or Common Crawl.

We used a symmetric window size of 10 words for construct-
ing the word co-occurrence matrix. The resulting matrix was sparse
with only 494M non-zero entries out of 170B total entries. Spar-
sity of the word co-occurrence matrix determines the training speed
of Glove because word pairs not co-occurring in the training data
receive a weight of 0 in the objective function. We set the embed-
ding dimension to 300 and used the value of the objective function
on 1% of the total word co-occurrence counts for stopping the Ada-
Grad optimization. The model took 2.5 days to train on a single
GPU with 10 passes through the training data. The resulting word
embeddings gave a 63% classification accuracy on the Google anal-
ogy task [1,2]. We next describe our ASR experiments on broadcast
news using FNNLMs.

3.2. ASR Experiments on Broadcast News Using FNNLMs

3.2.1. LM Perplexity

We performed experiments on an English broadcast news task and
trained all LMs on a 12M word subset of the 350M word training text
used in the 2007 IBM GALE speech transcription system [20]. We
limited the vocabulary of all LMs to the 20K most frequent words
in the corpus. The heldout set consists of reference transcriptions
from the dev04 test sets [20]. We used our IBM NNLM library for
training FNNLMs in Theano, and implemented the SWE-FNNLMs
in it. We trained all FNNLMs on Nvidia Tesla K40 GPUs using
mini-batch based stochastic gradient descent (SGD). Our FNNLM
model used a 300-dimensional embedding and 500 hidden neurons
with hyperbolic tangent activation function. We picked these topolo-
gies based on our prior experience with broadcast news ASR [12].
The SWE-FNNLMs used 300-dimensional semantic embeddings.

Fig. 3. This figure compares the broadcast news heldout set per-
plexity using the baseline FNNLM and SWE-FNNLM as training
proceeds.

Table 2 lists heldout set perplexities for several NNLMs and
a Kneser-Ney (KN) smoothed 6-gm LM trained on the 12M word

broadcast news corpus. We note that the SWE-FNNLM offers sig-
nificant improvement in perplexity over the corresponding baseline
FNNLMs. We would like to point out that the SWE-FNNLMs
have only slightly greater number of parameters compared to the
baseline FNNLMs. The (300,500) 5gm NNLM in Table 2 has
roughly 16.6M parameters while (300,500)+300 5gm SWE-NNLM
has around 17.9M parameters. This is because we do not update the
300-dimensional semantic embeddings during FNNLM training.

Single LM Perplexity % Reduction
6gm KN 144.5 -

5gm FNNLM 144.9 -0.3%
(300,500)

5gm SWE-FNNLM 128.5 11.1%
(300,500)+300

Interpolated LM Perplexity % Reduction
6gm KN + 118.3 18.1%
FNNLM

6gm KN + 111.8 22.6%
SWE-FNNLM

6gm KN + 109.6 24.2%
FNNLM + SWE-FNNLM

Table 2. This table presents heldout set perplexities for various LMs
on broadcast news. A (D,H) NNLM contains a D-dimensional pro-
jection layer and H hidden neurons. The SWE-FNNLM used 300-
dimensional semantic word embeddings as denoted by ”+300”. We
observe that the SWE-FNNLM has significantly lower perplexity
than the corresponding vanilla FNNLM.

We also observe that SWE-FNNLM model has significantly
lower perplexity than the vanilla FNNLM even after interpolation
with the 6gm KN LM. Interpolating all three LMs gives minor
improvement in perplexity over KN + SWE-FNNLM because the
SWE-NNLM already includes a word representation tuned on the
LM training data in addition to the semantic embeddings.

As an additional analysis, we compared the per-epoch heldout
set log-perplexity for the baseline FNNLM and SWE-FNNLM. Fig-
ure 3 shows that SWE-FNNLM maintains a significantly lower held-
out perplexity compared with the baseline FNNLM at each epoch.
In fact, the SWE-FNNLM perplexity at epoch 5 becomes better than
the final converged perplexity of the baseline FNNLM obtained at
epoch 15. We attribute this to the pre-trained Glove embeddings in
the SWE-FNNLM that already carry significant discriminative in-
formation to predict the next word.

The next section presents ASR lattice rescoring experiments on
the broadcast news data set using FNNLMs.

3.2.2. ASR Lattice Rescoring

We now discuss our lattice rescoring setup for FNNLMs on broad-
cast news. Our first ASR system (AM1) used a deep convolutional
neural network (CNN)-based hybrid ASR system trained on 400
hours of broadcast news data [21, 22]. The decoder vocabulary con-
tained 80K words and the baseline LM was a linear interpolation
of 4gm Kneser-Ney (KN)-smoothed LMs trained on different data
sources comprising a 350M word corpus. We generated lattices on
the rt04 test set containing 4 hours of speech data with a pruned
version of the baseline LM, and then rescored these lattices with
the unpruned baseline LM. This resulted in a baseline word error
rate (WER) of 11.3%. We then rescored the resulting lattices with
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various FNNLMs linearly interpolated with the 4gm KN LM. For
comparison, we also present rescoring results with a second acoustic
model (AM2) that is a discriminatively trained speaker-adaptive AM
trained on 430 hours of broadcast news [14]. The baseline WER of
this system is 13.0%.

AM1
LM WER % Reduction

4gm KN 11.3% -
4gm KN + FNNLM 11.0% 2.6%

4gm KN + SWE-FNNLM 10.7% 5.3%
AM2

LM WER % Reduction
4gm KN 13.0% -

4gm KN + FNNLM 12.7% 2.3%
4gm KN + SWE-FNNLM 12.6% 3.0%

Table 3. This table presents the test set WERs using LMs obtained
on the rt04 broadcast news data set after lattice rescoring using two
AMs. Both FNNLMs were trained on a 12M subset of the 350M
training set and used a vocabulary short-list consisting of the most
frequent 20K words. The baseline 4gm KN LM was trained on the
350M training set with a vocabulary of 80K words.

Table 3 presents the resulting WERs obtained after lattice rescor-
ing. The SWE-FNNLM gives a significant reduction (p < 0.01) in
WER over the vanilla FNNLM for both AM1 and AM2.

3.3. ASR Experiments on Broadcast News Using RNNLMs

3.3.1. LM Perplexity

We studied the perplexity of RNNLMs on exactly the same setup as
for FNNLMs. We used back-propagation through time with mini-
batch updates for training the RNNLMs in Theano. Our RNNLMs
used a 180-dimensional embedding and 500 hidden neurons with
hyperbolic tangent activation function. We fixed the sequence length
of the RNNLM to 18 words which is the average length of a sentence
in the training data set, and used 8 sequences in each mini-batch.
More details of the RNNLM training are provided in [11]. Table 4
shows the heldout set perplexities for various RNNLMs. We observe
significant improvements by using SWE-RNNLM.

3.3.2. ASR N-best Rescoring

This section presents ongoing ASR N-best rescoring experiments us-
ing SWE-RNNLMs. We would like to point out that these initial
results use AM2 from Table 3 and are on the dev04 set.

Our N-best rescoring setup using RNNLMs is similar to the
setup used in [11]. We generated 50-best lists by decoding the de-
velopment dev04 set with the baseline acoustic model and 4-gm KN
LM trained on 350M words. We generated 50-best sentence-level
probabilities from the RNNLM/SWE-RNNLM, and log-linearly in-
terpolated these with the baseline LM score and the acoustic model
score. We used the heldout set for tuning the interpolation weights
using the simplex algorithm from the SRILM toolkit [23]. Table 5
shows the test set WERs obtained after 50-best rescoring.

We observe that while the RNNLM gives a small improvement
over the baseline 4gm KN LM, we do not see a significant additional
gain by using a SWE-RNNLM. We hypothesize multiple reasons
for this result. First, the embeddings learned by a vanilla RNNLM

Single LM Perplexity % Reduction
6gm KN 144.5 -
RNNLM 145.8 -0.9%
(180,500)

SWE-RNNLM 132.1 8.6%
(180,500)+300

Interpolated LM Perplexity % Reduction
6gm KN + 115.7 19.9%
RNNLM

6gm KN + 111.1 23.1%
SWE-RNNLM

6gm KN + 108.7 24.8%
RNNLM + SWE-RNNLM

Table 4. This table presents heldout set perplexities for various LMs
on broadcast news. We observe that the SWE-RNNLM has signifi-
cantly lower perplexity than the corresponding vanilla RNNLM.

LM WER % Reduction
4gm KN 14.2% -

4gm KN + RNNLM 13.9% 2.1%
4gm KN + SWE-RNNLM 13.9% 2.1%

Table 5. This table gives the test set WERs obtained using RNNLMs
on the dev04 broadcast news data set after 50-best rescoring.

already incorporate long-range context. This makes them less di-
verse with respect to the semantic word embeddings estimated using
a window of 10 words. Second, a 50-best rescoring framework might
not be ideal for seeing the performance benefit of using a SWE-
RNNLM. Third, the training of a RNNLM is much more sensitive to
hyper-parameters compared to a FNNLM. The training might easily
be swayed astray by issues such as dynamic range of the semantic
word embeddings. We are currently investigating these issues.

4. CONCLUSION AND FUTURE WORK

This paper presents models for incorporating semantic word embed-
dings (SWEs) in neural network language models (NNLMs). We hy-
pothesize that the resulting SWE-NNLMs are better than the vanilla
NNLMs because they use word embeddings that better capture se-
mantic information than the word embedding learned in a NNLM.
Our experiments show significant improvements in both perplexity
and word error rate (WER) on a broadcast news ASR system for the
case of feed-forward NNLMs (FNNLMs).

Our motivation in extending the use of embeddings to recurrent
networks was to explore any additional temporal information that
could be captured via the encoded co-occurence information in the
embeddings, in addition to the temporal context in the RNNs. Al-
though, the SWE-RNNLM yields significant improvements in per-
plexity, we did not observe any significant reduction in WER. We
plan to explore this further in the future.
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