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ABSTRACT

This paper describes minimum word error (MWE) training of recur-
rent neural network language models (RNNLMs) for speech recog-
nition. RNNLMs are usually trained to minimize a cross entropy
of estimated word probabilities against the correct word sequence,
which corresponds to maximum likelihood criterion. However, this
training does not necessarily maximize a performance measure in
a target task, i.e. it does not minimize word error rate (WER) ex-
plicitly in speech recognition. To solve such a problem, several dis-
criminative training methods have already been proposed for n-gram
language models, but those for RNNLMs have not sufficiently in-
vestigated. In this paper, we propose a MWE training method for
RNNLMs, and report significant WER reductions when we applied
the MWE method to a standard Elman-type RNNLM and a more ad-
vanced model, a Long Short-Term Memory (LSTM) RNNLM. We
also present efficient MWE training with N -best lists on Graphics
Processing Units (GPUs).

Index Terms— Speech recognition, Recurrent neural network
language model, Long short-term memory, Minimum word error
training

1. INTRODUCTION

Language models are indispensable for large-vocabulary continuous-
speech recognition. These models, which are usually built based on
n-gram statistics, provide prior probabilities of hypothesized sen-
tences to disambiguate their acoustical similarities. To build an
n-gram model, text corpora are used to estimate the probability of a
word’s occurrence conditional on the preceding n-1 words, where n
is typically 3 or 4.

On the other hand, continuous space language models based on
neural networks have attracted increased attention in recent years
[1–7]. With this approach, word indexes are mapped to a continu-
ous space and word probability distributions are estimated as smooth
functions in that space. Consequently, the approach makes it pos-
sible to provide better generalization for unseen n-grams [2]. A
recurrent neural network language model (RNNLM) is a promis-
ing instance of such continuous space language models [3–7] An
RNNLM has a hidden layer with re-entrant connections to itself with
one word delay. Hence, the activations of the hidden units play a
role of memory keeping a history from the beginning of the speech.
Accordingly, the RNNLM can robustly estimate word probability
distributions by taking long-distance inter-word dependencies into
account. In addition, more advanced RNNLMs, Long Short-Term
Memory (LSTM) RNNs [8] are introduced in language modeling
for speech recognition [9], which can capture longer contextual in-

formation than the standard RNNLMs by handling the memory with
several gating functions, and improves the recognition accuracy.

In most cases, RNNLMs are trained to minimize a cross en-
tropy of estimated word probabilities against the correct word se-
quence given history, which corresponds to maximizing the likeli-
hood for given training data. However, this training does not neces-
sarily maximize a performance measure in a target task, i.e. it does
not minimize word error rate (WER) explicitly in speech recogni-
tion. For n-gram-based language models, several types of discrim-
inative language models (DLMs) and their training methods have
been proposed [10–13] to solve this problem, but those for continu-
ous space LMs have not sufficiently investigated except a few meth-
ods [14–16]. In [14], continuous feature representations were used
for DLMs. In [15], a hidden activation vector of RNNLM is added
to the feature vector for a log-linear LM. In [16], the cross entropy
criterion is modified based on word confidence measure.

In this paper, we incorporate a minimum word error (MWE)
criterion in a back-propagation through time (BPTT) algorithm for
RNNLMs, which minimizes the expected word error rate using a
set of N -best lists generated by a speech recognizer. Although this
new method much increases the training computation in proportion
to the size of N -best list, it can be performed in realistic time by
parallelizing the BPTT over multiple word sequences using graphic
processors. We evaluate our method with class-based Elman-type
RNNLMs and LSTM RNNLMs with a meeting transcription task of
AMI corpus [17] and a lecture transcription task of the Corpus of
Spontaneous Japanese (CSJ) [18].

This paper is organized as follows. Section 2 describes prior
work related to this paper. Section 3 explains basic structure of an
RNNLM and a LSTM. Section 4 presents minimum word error train-
ing for RNNLMs and implementation techniques. Section 5 shows
our experimental results on meeting and lecture transcription tasks,
and Section 6 concludes this paper.

2. RELATED WORK

Discriminative training methods are widely used in speech recog-
nition, where acoustic or language models are trained to optimize
their parameters based on a discriminative criterion [19, 20]. Un-
like the maximum likelihood approach, those methods can improve
discriminative performance of models by taking a set of competing
hypotheses for each training sample into account.

In language modeling, n-gram probabilities are directly opti-
mized with a minimum classification error criterion [10], and log-
linear language models with n-gram features are trained with a per-
ceptron algorithm [12], reranking boosting [21], and minimum word
error rate training [22, 23]. Since these methods were basically de-
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Fig. 1. RNNLM

signed for n-gram models or n-gram-feature-based models, they
cannot be used directly for neural network-based language models
including RNNLMs. Although a method in [15] employs a hidden
activation vector of an RNNLM as additional features for a log-linear
language model, the RNNLM itself is not trained discriminatively.

On the other hand, a discriminative training method has recently
been proposed for RNNLMs [16]. In this method, the likelihood ra-
tio of each reference word to the corresponding hypothesized word
is used instead of the cross entropy. However, this method does
not sufficiently exploit the potential ability of discriminative train-
ing with regards the following three reasons; (1) It considers only
one competitor for each reference word, where the competitor is a
hypothesized word in the 1-best ASR result. In general, it is better
to consider multiple competitors in discriminative training. (2) It is
not a sequence training since word-to-word alignment is fixed dur-
ing the training. This means that inter-dependence of word errors
is ignored. (3) It does not directly minimize word error rate that is
the ASR performance measure. Our proposed method can handle
all these problems by using expected word error rate as the objective
function, which is calculated overN -best hypotheses generated by a
speech recognizer.

Furthermore, we apply the proposed method to LSTM language
models in addition to standard Elman-type RNNLMs. To the best of
our knowledge, discriminative training of LSTM RNNLMs has not
been reported.

3. RECURRENT NEURAL NETWORK LANGUAGE
MODELS

In this work, we discriminatively train a class-based RNNLM [4].
and an LSTM RNNLMs based on a minimum word error criterion.

For simplicity, we start from a standard RNNLM depicted in Fig.
1. Given a word sequence w1, . . . , wt, . . . , wT with vocabulary V ,
the input vector xt ∈ {0, 1}|V|for time index t is represented as

xt = OneHot(wt−1), (1)

where OneHot(w) denotes the 1-of-N coding of wordw, which con-
verts a word index to a one hot vector representation.

The D dimensional activation vector ht ∈ [0, 1]D in the current
hidden layer can be computed as

ht = σ(Wihxt +Whhht−1), (2)

where Wih ∈ RD×|V| and Whh ∈ RD×D are the input-hidden
and hidden-hidden weight matrices. σ(·) is an element-wise sigmoid
function.

Output vector yt ∈ [0, 1]|V|, which corresponds to the predicted
word distribution, is obtained as

yt = ζ(Whoht), (3)

where Who is the weight matrix to the output layer. ζ(·) denotes a
softmax function that computes the softmax over the elements in a
given vector. Finally, the following is the word occurrence probabil-
ity of wt in context ht,

P (wt|ht) ≡ yt[wt], (4)

where yt[wt] indicates the wt-th element of vector yt. Hereafter, we
use [·] to specify an element in the vector.

For class-based RNNLMs, the output vector yt ∈ [0, 1]|V|+|C|

(|C|: number of classes) consists of word and class outputs

yt =

[
y

(w)
t

y
(c)
t

]
, (5)

which can be obtained as

y
(w)
t,m = ζ(W

(w)
ho,mht) (6)

y
(c)
t = ζ(W

(c)
ho ht), (7)

where y(w)
t,m and W (w)

ho,m are the sub-vector of y(w)
t and sub-matrix

of Who corresponding to the words in the m-th class, respectively.
W

(c)
ho is the sub-matrix of Who for the class output.

The word occurrence probability is computed as

P (wt|ht) ≡ y(w)

t,C(wt)[wt]× y(c)
t [C(wt)] (8)

where C(w) denotes the index of the class the word w belongs to.
With the class-based architecture, the computation for propagat-

ing activations from the hidden layer to the output layer can be re-
duced, since we need to handle only the words in the class of the cur-
rent word to compute the softmax function rather than all the words
in the vocabulary.

As an extension of RNNs, Long Short-Term Memory (LSTM)
RNNs were proposed [8] and applied to language modeling [9]. It
is well known that the standard RNNs cannot hold the hidden acti-
vation information for long time because the activation pattern at a
certain time is exponentially decaying according as iterative propa-
gation through time, and it is difficult to train interdependence be-
tween distant events [24]. To solve this problem, the LSTM has
memory cells instead of regular network units. An LSTM cell can
remember a value for an arbitrary length of time, which contains
input, forget, and output gates that determine when the input is sig-
nificant enough to remember, when it should continue to remember
or forget the value, and when it should output the value. An example
of LSTM cell is depicted in Fig. 2.

4. MINIMUM WORD ERROR TRAINING FOR RNNLMS

The loss function of minimum word error training can be written as

L(Λ) =

K∑
k=1

∑
W∈V∗

E(W
(R)
k ,W )PΛ(W |Ok), (9)

where Λ is the set of model parameters, K is the number of utter-
ances in training data, Ok is the k-th acoustic observation sequence,
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Fig. 2. Long short-term memory cell

and W
(R)
k = {w(R)

k,1 , · · · , w
(R)
k,Tk
} is the k-th reference word se-

quence. E(W ′,W ) represents the edit distance between two word
sequences W ′ and W . PΛ(W |O) is the posterior probability of W
computed with the model parameter set Λ.

In this work, since we use a set of N -best lists, we obtain the
loss function as

L(Λ) =

K∑
k=1

N∑
n=1

E(W
(R)
k ,Wk,n)PΛ(Wk,n|Ok), (10)

where Wk,n = {wk,n,1, · · · , wk,n,Tk,n} is a word sequence of n-
th hypothesis in the N -best list for k-th utterance. Tk,n denotes the
number of words in hypothesis Wk,n. The posterior probability of
Wk,n can be computed as

PΛ(Wk,n|Ok) =
exp(gk,n)∑N

m=1 exp(gk,m)
(11)

where gk,n is the log-likelihood score of hypothesis Wk,n obtained
by

gk,n = α logPΛL(Wk,n) + logPΛA(Ok|Wk,n), (12)

and ΛL and ΛA are the sets of language and acoustic model param-
eters, respectively. We assume that ΛA is fixed in language model
training. α is a scaling factor to balance the acoustic and language
scores.

The language log-probability is obtained by the RNNLM as

logPΛL(Wk,n) =

Tk,n∑
t=1

logPΛL(wk,n,t|hk,n,t)

=

{∑Tk,n

t=1 log yk,n,t[wk,n,t],∑Tk,n

t=1 log y
(w)

k,n,t,C(wk,n,t)[wk,n,t]× y(c)
k,n,t[C(wk,n,t)]

(13)

where yk,n,t[wk,n,t] corresponds to the output of the RNNLM for
the t-th word in Wk,n. Each word probability can be computed
using a word-based model (the upper in the curly brace) or class-
based model (the lower in the curly brace) according to Eq. (8).
Hereafter, we describe the optimization procedure only for the word-
based models, but it can be easily extended for the class-based mod-
els.

We obtain partial derivatives of loss function L(Λ) with respect
to ΛL for the back propagation through time (BPTT) algorithm. For

simplicity, here we only show the derivative with respect to each
RNNLM’s output ok,n,t before applying the softmax function, i.e.
∂L(Λ)/∂ok,n,t[i], where

yk,n,t[wk,n,t] =
exp(ok,n,t[wk,n,t])∑|V|

i=1 exp(ok,n,t[i])
. (14)

The derivative can be factorized into two derivatives using the
chain rule as

∂L(Λ)

∂ok,n,t[i]
=
∂L(Λ)

∂gk,n

∂gk,n
∂ok,n,t[i]

. (15)

The first factor corresponds to the differences with respect to the N -
best hypothesis scores, and the second factor corresponds to those
of RNN’s output from the target. Accordingly, if we obtained the
first factor for each N -best hypothesis, the original BPTT algorithm
can be performed over N -best hypotheses using the multiplication
of these two factors as the error signal for the RNNLM.

By substituting Eqs. (11) and (12) into Eq. (10), the first factor
can be obtained as

∂L(Λ)

∂gk,n

=

N∑
n′=1

E(W
(R)
k ,Wk,n′)PΛ(Wk,n|Ok){δn,n′ − PΛ(Wk,n′ |Ok)}

= PΛ(Wk,n|Ok)
{
E(W

(R)
k ,Wk,n)− Ē(k)

}
,

(16)

where Ē(k) stands for the expectation of the number of word errors,
which corresponds to

Ē(k) =

N∑
n′=1

E(W
(R)
k ,Wk,n′)PΛ(Wk,n′ |Ok). (17)

The second factor is obtained with the same way as the case of cross
entropy criterion by using Eqs. (13) and (14).

∂gk,n
∂ok,n,t[i]

=
∂yk,n,t[wk,n,t]

∂ok,n,t[i]
= (δi,wk,n,t − yk,n,t[i]). (18)

As shown in the above equations, the first factor has an effect
that if the number of errors is larger than its mean value, the error
signal of Eq. (18), i.e. the second factor, is emphasized toward the
positive direction, and if the number of errors is smaller, the error
signal is emphasized toward the negative direction.

In the training iterations, we apply the stochastic gradient de-
scent method on utterance-by-utterance basis, i.e. the gradients are
accumulated overN -best hypotheses in the list. For each hypothesis,
BPTT is performed with the error vector obtained by Eqs. (15)-(18).
After processing each N -best list, the parameters are updated with
the sum of gradients.

However, the proposed method needs more computations than
cross-entropy-based training since the number of sentences increases
byN times forN -best lists. We solve this problem by parallelization
with Graphics Processing Units (GPUs). Actually, gradient accumu-
lation can be performed in parallel over multiple hypotheses in each
N -best list. According to the technique in [2], we input multiple
words at the same time to the RNNLM, where all the words are lo-
cated at the same position in the different sentences of the N -best
list. Since the set of words, hidden activations, and output proba-
bilities can be represented as a matrix, most steps in training can be
performed by matrix-matrix operations on a GPU.
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Table 1. Data sets used for experiments
Train Dev. Test

AMI Speech [hours] 77.9 8.9 8.7
Transcript [#word] 108,502 94,914 89,635

CSJ Speech [hours] 236.5 1.9 2.0
Transcript [#word] 3,764,025 28,790 28,253

5. EXPERIMENTS

We evaluated our discriminative training approach with a meeting
transcription task of AMI corpus [17] and a lecture transcription task
of the Corpus of Spontaneous Japanese (CSJ) [18]. The data sizes of
training, development and test sets are summarized in Table 1.

The baseline ASR systems for AMI and CSJ were prepared ac-
cording to Kaldi’s recipes [25]. Mel-Frequency Cepstral Coefficient
(MFCC) features were extracted from 16-kHz-sampled speech data,
which were then transformed using feature-space maximum likeli-
hood linear regression (fMLLR) [26] using the speaker labels. Each
fMLLR transform was estimated using a Gaussian Mixture Model
(GMM) based ASR system by iteratively maximizing the likelihood
of the data given the transcription alignments for the training data,
and the one-best hypothesis alignment obtained by the system for
the test data.

Standard (11 frame context) Deep Neural Network (DNN)
acoustic models with six layers were trained for each task, where the
AMI model had 2048 units in each hidden layer and 3987 units in
the output layer, and the CSJ model had 1905 units in each hidden
layer and 9380 units in the output layer [27]. The both acoustic
models were trained based on Cross Entropy (CE) and retrained
with a state-level Minimum Bayes Risk (sMBR) criterion [28].

Kneser-Ney smoothed 3-gram language models were prepared
for the baseline systems. For AMI task, the 3-gram model was made
by linear interpolation of two models trained with transcripts of AMI
and Fisher corpora, respectively. The Fisher corpus [29] consists
of telephone conversations, which is approximately 13 times larger
than AMI with regard to the transcripts. For CSJ task, the baseline
3-gram model was made only with CSJ transcripts. The vocabulary
sizes for AMI and CSJ were 49,413 and 75,568, respectively.

Standard RNN and LSTM language models were first trained
with the cross entropy, and then retrained using the proposed MWE
training method. The vocabulary sizes of AMI and CSJ models were
7,479 and 24,970, respectively, which were reduced from their base-
line vocabularies by substituting less frequent words with a specific
symbol. This vocabulary reduction is effective in terms of computa-
tion, and did not have any negative impact on the recognition accu-
racy in our preliminary experiments. Furthermore, we did not use the
Fisher corpus for training AMI RNNLMs, which resulted in almost
the same accuracy as that when including the corpus. Each stan-
dard RNNLM was constructed as a class-based model, which had
one hidden layer of 300 units, while each LSTM model was made
as a word-based model, which had two hidden LSTM layers of 300
units.

In RNNLM training, the development set was used for valida-
tion to control the learning rate, i.e. the rate was reduced if cross
entropy or word error rate for the development set increased after
each iteration. Finally, the training process was stopped when the
learning rate reached a certain threshold.

We generated a 100-best list for each utterance in training, devel-
opment, and test sets using the baseline ASR systems, and used those

Table 2. Word error rate on AMI corpus
Dev. set Test set

Baseline 3-gram 24.4 24.7
RNNLM CE 23.1 23.3
RNNLM MWE 22.7 22.8
LSTM-LM CE 22.9 23.0
LSTM-LM MWE 22.5 22.6
N-best oracle 12.5 12.0

Table 3. Word error rate on CSJ corpus
Dev. set Test set

Baseline 3-gram 9.1 10.9
RNNLM CE 8.7 10.3
LSTM-LM CE 8.2 9.9
LSTM-LM MWE 8.0 9.7
N-best oracle 4.5 5.8

lists for MWE training and its evaluation. We measured the perfor-
mance of language models in word error rate (WER) [%] of 1-best
hypotheses after reranking each 100-best list by RNNLM scores. In
all experiments with RNNLMs, the 3-gram probabilities were used
together with RNNLM probabilities by linearly interpolating them in
log domain, since the interpolation always yields better performance
than single use of RNNLMs. This interpolated language scores were
also used in MWE training to calculate the hypothesis score of Eq.
(12).

Tables 2 and 3 show word error rates when using different lan-
guage models in AMI and CSJ tasks. In the tables, “N-best oracle”
means the average WER of the hypothesis with the minimum word
errors in each N -best list. This indicates the lower-bound of WER
that can be reached by N -best rescoring.

As shown in the tables, RNNLMs always outperform the base-
line 3-gram models. For standard and LSTM RNNLMs, we obtained
certain WER reductions by MWE training, in which all the WER
differences are statistically significant with the level of 5% . In ad-
dition, the LSTM LMs yielded lower WERs than those of standard
RNNLMs. Although it is not a strict comparison between RNN and
LSTM LMs because their structures are not the same, we can see that
our MWE training method are effective for both types of RNNLMs.

6. CONCLUSION

In this paper, we proposed a minimum word error (MWE) training
method for recurrent neural network language models, which ex-
plicitly minimizes word error rate (WER) using multiple hypothe-
ses generated by a speech recognizer. From the experimental re-
sults on the AMI and CSJ corpora, we showed that the proposed
method yielded standard RNN and LSTM language models with
lower WERs than those trained with a conventional cross entropy
criterion, where the WER reductions were statistically significant.
Finally we achieved 22.6% WER in the AMI task and 9.7% WER in
the CSJ task by using MWE-trained LSTM language models, which
correspond to 8.5% and 11% error reductions from the 3-gram base-
line, respectively. Future work will include comparison and com-
bination with other discriminative approaches such as the method
of [16].
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nition and understanding of meetings the ami and amida
projects,” in Proc. of the IEEE Workshop on Automatic Speech
Recognition and Understanding, ASRU’07, 12 2007.

[18] Kikuo Maekawa, “Corpus of spontaneous japanese: Its design
and evaluation,” in ISCA & IEEE Workshop on Spontaneous
Speech Processing and Recognition, 2003.

[19] Biing-Hwang Juang, Wu Hou, and Chin-Hui Lee, “Mini-
mum classification error rate methods for speech recognition,”
Speech and Audio Processing, IEEE Transactions on, vol. 5,
no. 3, pp. 257–265, 1997.

[20] Brian Roark, “A survey of discriminative language model-
ing approaches for large vocabulary continuous speech recog-
nition,” Automatic Speech and Speaker Recognition: Large
Margin and Kernel Methods, pp. 117–137, 2009.

[21] Zhengyu Zhou, Jianfeng Gao, Frank K Soong, and Helen
Meng, “A comparative study of discriminative methods for
reranking lvcsr n-best hypotheses in domain adaptation and
generalization,” in Acoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International
Conference on. IEEE, 2006, vol. 1, pp. I–I.

[22] Franz Josef Och, “Minimum error rate training in statistical
machine translation,” in Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics-Volume 1.
Association for Computational Linguistics, 2003, pp. 160–167.

[23] Jen-Wei Kuo and Berlin Chen, “Minimum word error based
discriminative training of language models.,” in INTER-
SPEECH, 2005, pp. 1277–1280.

[24] Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learn-
ing long-term dependencies with gradient descent is difficult,”
Neural Networks, IEEE Transactions on, vol. 5, no. 2, pp. 157–
166, 1994.

[25] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukáš Bur-
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