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ABSTRACT
Exemplar-based acoustic modeling is based on labeled training seg-
ments that are compared with the unseen test utterances with respect
to a dissimilarity measure. Using a larger number of accurately
labeled exemplars provides better generalization thus improved
recognition performance which comes with increased computation
and memory requirements. We have recently developed a noise ro-
bust exemplar matching-based automatic speech recognition system
which uses a large number of undercomplete dictionaries containing
speech exemplars of the same length and label to recognize noisy
speech. In this work, we investigate several speech exemplar se-
lection techniques proposed for undercomplete speech dictionaries
to find a trade-off between the recognition accuracy and the acous-
tic model size in terms of the amount of speech exemplars used
for recognition. The exemplar selection criterion has be to chosen
carefully as the amount of redundancy in these dictionaries is very
limited compared to overcomplete dictionaries containing plenty
of exemplars. The recognition accuracies obtained on the small
vocabulary track of the 2nd CHiME Challenge and the AURORA-2
database using the complete and pruned dictionaries are compared
to investigate the performance of each selection criterion.

Index Terms— Noise robust exemplar matching, alpha-beta di-
vergence, collinearity reduction, k-medoids, exemplar selection

1. INTRODUCTION

Exemplar-based speech recognition systems [1–7] use labeled
segments from training data to identify unseen speech. These
approaches resemble the first attempts to solve the automatic
speech recognition (ASR) problem performing dynamic time warp-
ing [8–10]. The recognition can be performed by comparing these
labeled segments with the segments from the test utterances with
respect to a dissimilarity measure. Though exemplars provide the
most natural duration and trajectory modeling when compared to
its statistical counterparts, e.g. hidden Markov models (HMM) or
deep neural networks (DNN), large amounts of data are required to
handle the acoustic variation among different utterances.

In order to reduce high memory and computational power re-
quirements, several exemplar selection algorithms are proposed in
[11, 12]. The main goal of these techniques is to remove less infor-
mative exemplars, e.g. duplicates or rarely used ones, or whose pres-
ence result in inaccurate recognition and achieve comparable recog-
nition accuracies using only a portion of the exemplars. Statistical
acoustic model training also benefits from data selection as the train-
ing times are reduced significantly and sometimes the recognition
performance is improved due to the reduced noise and redundancy
in the training data [13–16].
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Using exemplars in a sparse representation (SR) formulation
provides significantly improved noise robustness and exemplar-
based sparse representations have been successfully used for feature
extraction, speech enhancement and noise robust speech recogni-
tion tasks [17–20]. These approaches model the acoustics using
fixed length exemplars which are labeled at frame level and stored
in the columns of a single overcomplete dictionary. Noisy speech
segments are jointly approximated as a sparse linear combination
of speech and noise exemplars with exemplar weights obtained by
solving a regularized convex optimization problem.

Reducing the dimensions of large datasets stored in a single
overcomplete dictionary has been investigated in different fields and
several matrix decompositions such as the singular value decomposi-
tion (SVD), rank revealing QR decomposition, CUR matrix decom-
position, interpolative decomposition (ID) have been used to obtain
a low-rank matrix approximation of the complete data matrix [21].
Although the SVD is known to provide the best rank-k approxima-
tion, interpretation of the principal components is difficult in data
analysis [22]. Therefore, several CUR matrix decompositions have
been proposed in which a matrix is decomposed as a product of three
matrices C, U, R and the matrices C and R consist of a subset
of the actual columns and rows respectively [23, 24]. Several com-
putationally efficient exemplar selection techniques are introduced
and applied to polyphonic music transcription task using an over-
complete dictionary containing exemplars of different musical notes
in [25]. [26] discusses various ways of reducing the speech and noise
dictionaries for an exemplar-based sparse representations approach
applied on noise robust ASR task.

In this paper, we focus on the noise robust exemplar matching
(N-REM) framework [27] which is an exemplar matching recogni-
tion system with noise modeling capabilities. In this framework,
the recognizer uses different length exemplars organized in separate
dictionaries based on their duration and label (the associated speech
unit) [27]. The input speech segments are approximated in a sparse
representations formulation, i.e. as a linear combination of the ex-
emplars in each dictionary. Compared to a system using fixed-length
exemplars stored in a single dictionary, using separate dictionaries
for each class provides better classification as input speech segments
are approximated as a combination of exemplars belonging to the
same class only. Moreover, each exemplar is associated with a sin-
gle speech unit and the natural duration distribution of each speech
unit in the training data is preserved yielding exemplars of different
lengths. This recognizer adopts a reconstruction error based back-
end, i.e. the recognition is performed by comparing the approxima-
tion quality for different classes quantified by a divergence measure
and choosing the class sequence that minimizes the total reconstruc-
tion error. In [28], we have proposed to use the alpha-beta diver-
gence [29] in place of the generalized Kullback-Leibler divergence
(KLD) which has been shown to be more robust against background
noise.
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The exemplar selection techniques discussed in this paper dif-
fer from previous work as the dictionaries store a lot less exemplars
due to the use of multiple dictionaries for each exemplar length and
label. Compared to the overcomplete dictionaries with a large num-
ber of data points, the redundancy in the undercomplete dictionaries
used by N-REM is quite limited. Therefore, removing a few infor-
mative data points may already result in significant decreases in the
recognition accuracy. We have presented the initial findings of our
efforts to select a subset of speech exemplars in [30] and reported
some promising recognition results on a clean digit recognition task.
In this work, we extend the investigation of the proposed exemplar
selection technique with the best performance, namely collinearity
reduction, on all available SNR levels of the small vocabulary track
of the 2nd CHiME Challenge and the AURORA-2 database. More-
over, in addition to this technique, we propose a symmetric AB-
divergence-based k-medoids algorithm for exemplar selection from
undercomplete dictionaries. The AB-divergence is chosen as a dis-
similarity measure to be consistent with the recognition setup.

2. NOISE ROBUST EXEMPLAR MATCHING

Training frame sequences representing various speech units (speech
exemplars) are extracted based on the state-level alignments ob-
tained using a conventional HMM-based recognizer. Speech exem-
plars, each comprised of D mel frequency bands and spanning l
frames, are reshaped into a single vector and stored in the columns
of a speech dictionary Sc,l: one for each class c and each frame
length l. Each dictionary is of dimensionality Dl×Nc,l where Nc,l
is the number of available speech exemplars of class c and frame
length l. Similarly, a noise dictionary Nl for each frame length l
is formed by reshaping the noise exemplars. Each speech dictio-
nary is concatenated with the noise dictionary of the same length
to form a combined dictionary Ac,l = [Sc,lNl] of dimensionality
Dl ×Mc,l where Mc,l is the total number of available speech and
noise exemplars.

An observed noisy (and/or reverberated) speech segment of
frame length T frames is also reshaped into vectors by applying
a sliding window approach [18] with window length of l frames
and stored in an observation matrix Yl = [y1

l ,y
2
l ...,y

(T−l+1)
l ] of

dimensionality Dl × (T − l + 1). Due to multiple-length exem-
plars, the window length l is varied between the minimum exemplar
length lmin and maximum exemplar length lmax yielding observa-
tion matrices Yl for lmin ≤ l ≤ lmax. For every class c, each
observation vector yl is expressed as a linear combination of the
exemplars that are stored in the dictionaries of the same length:
yl ≈

∑Mc,l
m=1 x

m
c,la

m
c,l = Ac,lxc,l for xmc,l ≥ 0. Here, xc,l is an

Mc,l-dimensional non-negative weight vector. The combined dic-
tionaries consisting of speech and noise exemplars are presumed to
model all acoustic variability in the observed signal due to pronun-
ciation variation, background noise and so forth. This model can
also model reverberation by storing reverberated speech exemplars
rather than clean speech exemplars.

The exemplar weights xc,l are obtained by minimizing the cost
function consisting of a single term which quantifies the approxima-
tion error d(yl,Ac,lxc,l) for non-negative exemplar weights. This
optimization problem can be solved with non-negative sparse coding
(NSC) [31]. The value of approximation error is highly dependent
on the divergence measure d and the representation of speech and
noise sources. Motivated by its capabilities to weight and scale the
individual ratios of the noisy speech and its approximation, yil/ŷ

i
c,l

where ŷc,l = Ac,lxc,l, the AB divergence is used for d. The AB
divergence d(α,β)AB (y, ŷ) is defined as
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(1)
where γ = α+ β. The two parameters of the AB divergence can be
automatically adjusted based on the amount of contamination in the
target utterance as the recognition performance for different noise
levels depends on the emphasized (reliable) time-frequency bins. For
the NSC solution, we apply the multiplicative update rule minimiz-
ing the approximation error d(yl,Ac,lxc,l) using the AB divergence
for α 6= 0 which is given by

xc,l ← (xc,l � ((AT
c,lZc,l) � (AT

c,l(Ac,lxc,l)
.[γ−1])).[ω/α]).[1+θ],

(2)
where Zc,l = y

.[α]
l � (Ac,lxc,l)

.[β−1] and .[ ] denotes element-wise
exponentiation. ω is a value between (0, 2) and θ is a very small
positive number [32].

All observation matrices Yl for lmin ≤ l ≤ lmax are approx-
imated using the combined dictionaries Ac,l of the corresponding
length by applying the multiplicative update rule. To quantify the
approximation quality, we use the reconstruction error between the
noisy speech segments and their approximations. The multiplicative
update rule is applied iteratively until the reconstruction error pro-
vides enough discrimination between different classes. The number
of iterations that satisfies this criterion has been investigated in pilot
experiments. After a fixed number of iterations for all dictionaries,
the reconstruction errors between the observation matrix Yl and its
approximations Ac,lxc,l are calculated for lmin ≤ l ≤ lmax. As the
label of each dictionary is known, decoding is performed by apply-
ing dynamic programming [33] to find the class sequence that min-
imizes the reconstruction error (taking the grammar into account if
necessary).

3. EXEMPLAR SELECTION TECHNIQUES
The N-REM recognition scheme benefits from discarding redun-
dant speech exemplars due to two main reasons. First, the com-
putational load mainly due to the iterative evaluation of the mul-
tiplicative update rule reduces proportional to the dictionary sizes.
Furthermore, the memory required to store the pruned dictionaries
is much less than storing the complete dictionaries. For this pur-
pose, we investigate the impact of two exemplar selection methods,
namely collinearity reduction and k-medoids with symmetric AB di-
vergence, on the recognition accuracy in both clean and noisy con-
ditions.

3.1. Collinearity Reduction (CR)
The CR selection technique discards exemplars that are well approx-
imated by the other exemplars of the same length and class (i.e. other
exemplars in the same dictionary). The exemplars with larger recon-
struction errors are expected to contribute more when approximating
unseen noisy segments compared to the ones with smaller recon-
struction errors. Therefore, the CR technique compares the recon-
struction errors for all exemplars in a dictionary by approximating
each exemplar as a linear combination of the other exemplars in the
same dictionary. This idea is applied iteratively by removing the ex-
emplar that is approximated with the minimum reconstruction error
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at each iteration until the minimum number of exemplars require-
ment in a dictionary is met.

3.2. K-medoids with AB Divergence (KMED)

KMED selection technique is based on the partitioning around
medoids (PAM) technique [34] using a symmetric version of the
AB divergence as a novel dissimilarity measure. The symmetric
version of the AB divergence given in Equation (1) is obtained as
1
2

[
d
(α,β)
AB (y, ŷ) + d

(α,β)
AB (ŷ,y)

]
. The higher computational com-

plexity of the PAM technique mentioned in [35] is not valid in
this scenario as the number of speech exemplars in each dictionary
is mostly on the order of magnitude one and two. This selection
technique is applied to every dictionary to obtain a certain number
of medoids that are expected to represent the convex hull formed
by the complete dictionary accurate enough. The divergence pa-
rameters are chosen based on the recognition performance of the
speech dictionaries on clean speech and the ones providing the best
clean speech recognition performance are used during the exemplar
selection.

4. EXPERIMENTAL SETUP
4.1. Databases

The training material of AURORA-2 [36] consists of a clean and a
multi-condition training set, each containing 8440 utterances. The
multi-condition training set was constructed by mixing the clean ut-
terances with noise at SNR levels of 20, 15, 10 and 5 dB. Test set
A and B consists of 4 clean and 24 noisy datasets at six SNR levels
between -5 and 20 dB. The noise types of test set A match the multi-
condition training set. Each subset contains 1001 utterances with
one to seven digits 0-9 or oh. To reduce the simulation times, we
subsampled the test sets by a factor of 4 (1000 utterances per SNR).

The small vocabulary track of the 2nd CHiME Challenge [37]
addresses the problem of recognizing commands in a noisy and re-
verberant living room. The clean utterances contain utterances from
34 speakers reading 6-word sequences of the form command-color-
preposition-letter-digit-adverb. There are 25 different letters, 10 dif-
ferent digits and 4 different alternatives for each of the other classes.
The recognition accuracy of a system is calculated based on the cor-
rectly recognized letter and digit keywords.

4.2. Dictionary Creation and Implementation Details

The speech exemplars of AURORA-2 data are extracted from the
clean training set. Acoustic feature vectors are represented in mel-
scaled magnitude spectra with 23 frequency bands. The speech
exemplars representing half-digits are segmented by a conventional
HMM-based system. The complete dictionary contains in total
52,295 speech exemplars excluding 990 silence exemplars. The
number of noise exemplars varies depending on the duration of the
noise-only sequences that are selected by active noise exemplar
selection (ANES) [27]. On average, the recognizer with the pruned
dictionaries containing 20% of the exemplars in each dictionary uses
11,355 and 1,044 noise exemplars/utterance in total at SNR level
of -5 dB and clean speech respectively. The divergence parame-
ters (α,β) for the KMED selection technique are set to 1 and 0.25
respectively. The minimum and maximum exemplar lengths are 8
and 40 frames respectively. Exemplars longer than 40 frames are
omitted to limit the number of dictionaries. The recognizer uses 675
class-dependent dictionaries in total. In the recognition phase, noise
dictionaries are created by performing noise sniffing and ANES. The
combined dictionaries and observation matrices are l2-normalized
for all SNR levels. The multiplicative update rule is iterated 100
times for convergence of all frame lengths. The further details are

given in [28]. The word error rate (WER) has been used to quantify
the recognition accuracy for the AURORA-2 digit recognition task.

The exemplars and noisy speech segments from CHIME-2 data
are represented as mel-scaled magnitude spectral features extracted
with a 26 channel mel-scaled filter bank (D = 26). The frame length
is 25 ms and the frame shift is 10 ms. The binaural data is averaged
in the spectral domain to obtain 26-dimensional feature vectors. The
exemplars are extracted from the reverberated utterances in the train-
ing set according to the state-based segmentations obtained using the
acoustic models in the toolkit provided with the database. Exem-
plars belonging to each speaker are organized in separate dictionary
sets for speaker-dependent modeling yielding 34 different dictionary
sets. Based on the availability of the exemplars, the minimum and
maximum exemplar lengths are 4 and 40 frames respectively. Half-
word exemplars seemed to generalize sufficiently to unseen data for
the recognition task. Dictionary sizes vary with different classes and
speakers. The divergence parameters (α,β) for the KMED selection
technique are set to 1 and 0 respectively. Prewarping [38] is applied
to boost the modeling capabilities of the underpopulated speech dic-
tionaries (especially for the ones belonging to letters due to the high
number of alternatives and hence the small number of exemplars per
class) and it is limited to a single frame. The number of exemplars
in each dictionary after prewarping is limited to 50. The noise mod-
eling is detailed in [28]. The multiplicative update rule is iterated 25
times to obtain the exemplar weights. The columns of the combined
dictionaries and observation matrices are l2-normalized. The further
details are given in [28]. The keyword recognition accuracy (RA) is
used to evaluate the system performance on the CHIME-2 data.

5. RESULTS AND DISCUSSION
The exemplar selection techniques described in Section 3 are applied
to the speech dictionaries obtained from AURORA-2 and CHIME-
2 data and the recognition performance of the recognizers using
only 20% of the exemplars per dictionary are presented in Table
1 and 2. The results obtained using the N-REM recognizer using
the generalized KLD (N-REM-KLD) with the complete dictionaries
[28], multi-condition trained GMM-HMM and DNN-HMM recog-
nizers and other exemplar-based sparse representation systems [18],
namely sparse classification (SC) and feature enhancement (FE), are
also provided for comparison. The baseline results obtained with
the complete dictionaries and the best results provided by the pruned
dictionaries are given in bold.

A pruning rate of 80%, i.e. using 20% of the exemplars in a dic-
tionary, is chosen based on the initial results presented in [30]. This
choice aims to compare the amount of degradation in the recogni-
tion accuracy when pruning goes further than the safe pruning rate
of 70% which is defined as the largest pruning rate without signif-
icant recognition accuracy loss [30]. We compare CR and KMED
techniques with the CUR decomposition which is a randomized col-
umn selection algorithm proposed as a part of the CUR matrix de-
composition in [22]. This algorithm randomly selects a subset of the
columns of a data matrix with respect to the probability distribution
computed as the normalized statistical leverage scores. The CUR de-
composition has been successfully applied in selecting a very small
number of exemplars from an overcomplete dictionary without a sig-
nificant recognition accuracy loss. We further provide the recog-
nition accuracies obtained using the randomly pruned dictionaries
(RND).

The WERs obtained on the clean test set of AURORA-2 are pre-
sented in the middle panel of Table 1a and 1b. The N-REM perfor-
mance using the complete dictionaries is given in the first row of the
tables. The clean speech performance of CR is the best among the
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Table 1: Word error rates in % obtained on test set A and B of AURORA-2 using 20% of exemplars in each dictionary
(a) Test set A

SNR(dB) clean -5 0 5 10 15 20 0-20
N-REM 1.8 14.9 8.5 5.8 4.7 3.5 2.3 5.0
CR 2.8 19.8 10.8 8.0 6.3 4.7 3.5 6.7
KMED 3.0 18.6 10.9 7.9 6.4 5.0 4.1 6.9
CUR 4.1 20.2 12.6 9.0 7.4 5.6 4.5 7.8
RND 4.1 20.4 12.5 9.0 7.2 5.5 4.5 7.8
N-REM-KLD 1.7 19.1 9.2 5.9 4.9 3.6 2.4 5.2
DNN 0.5 52.4 17.9 3.8 1.5 0.9 0.7 5.0
GMM 0.7 60.8 24.3 7.3 2.9 1.3 0.8 7.3
SC 3.7 35.2 13.8 7.4 5.6 4.8 4.5 7.2
FE 0.5 30.4 10.7 3.3 1.5 1.1 0.7 3.5

(b) Test set B

SNR(dB) clean -5 0 5 10 15 20 0-20
N-REM 1.8 53.5 24.5 10.4 4.9 3.1 2.5 9.0
CR 2.8 56.7 27.5 12.5 7.0 4.7 3.5 11.0
KMED 3.0 58.5 25.9 11.7 6.9 5.0 4.6 10.8
CUR 4.1 57.6 26.4 13.0 7.4 5.7 5.1 11.5
RND 4.1 56.1 26.9 12.8 7.2 5.6 4.3 11.4
N-REM-KLD 1.7 55.0 24.3 10.1 5.5 3.5 2.7 9.2
DNN 0.5 62.9 24.3 6.9 2.0 1.1 0.5 6.7
GMM 0.7 64.0 25.9 7.4 2.6 1.2 0.9 7.6
SC 3.7 52.4 23.5 11.0 5.9 2.7 4.5 9.9
FE 0.5 52.6 20.5 5.7 2.1 1.2 0.5 6.0

Table 2: Keyword recognition accuracies in % obtained on the dev. and test set of CHIME-2 using 20% of exemplars in each dictionary
(a) Development Set

SNR(dB) -6 -3 0 3 6 9 Avg

N-REM 75.4 78.8 86.3 90.5 91.2 92.7 85.8
CR 71.5 77.7 83.6 90.0 90.6 92.3 84.3
KMED 73.0 77.8 84.7 90.3 91.3 92.4 84.9
CUR 69.3 76.3 82.3 87.9 89.7 91.9 82.9
RND 70.4 76.1 81.8 88.8 89.2 91.5 83.0
N-REM-KLD 70.4 77.9 84.8 90.4 92.6 93.8 85.0
GMM 49.3 58.7 67.5 75.1 78.8 82.9 68.7
FE 68.0 72.2 80.9 86.7 89.0 90.5 81.2
HMM-FE 69.1 73.6 81.5 87.3 89.4 90.3 81.9
SC 75.5 81.4 87.5 89.9 92.4 92.3 86.5

(b) Test set

SNR(dB) -6 -3 0 3 6 9 Avg

N-REM 73.9 79.7 86.1 88.0 90.9 92.6 85.2
CR 72.1 78.7 84.9 87.1 90.6 91.8 84.2
KMED 71.8 77.9 83.8 86.9 89.4 91.6 83.6
CUR 70.1 77.4 82.9 85.5 88.7 90.4 82.5
RND 70.6 77.3 82.9 86.0 88.6 90.5 82.7
N-REM-KLD 71.0 78.9 85.3 88.7 91.9 92.8 84.8
HMM 49.7 57.9 67.8 73.7 80.8 82.7 68.8
FE 67.2 75.9 81.1 86.4 90.7 92.0 82.2
HMM-FE 67.0 77.0 81.8 87.0 91.2 92.4 82.7
SC 76.5 81.3 88.9 90.5 92.7 93.2 87.2

results obtained with the pruned dictionaries with a WER of 2.8%
compared to 1.8% yielded by the complete dictionaries. KMED also
provides a comparable result with a WER of 3.0%. These results are
consistent with the clean speech recognition results of CR presented
in [30]. Dictionaries pruned with the other techniques yield worse
performance.

The results on the noisy sets of test set A are given in the right-
most panel of Table 1a. These results further demonstrate the effec-
tiveness of CR and KMED in the noisy scenarios. N-REM with com-
plete dictionaries has a WER of 5.0% on average. CR and KMED
provide a WER of 6.7% and 6.9% respectively. CUR performs as
poorly as RND on this exemplar selection task yielding a WER of
7.8%. The results on test set B, which are presented in Figure 1b,
show a similar trend and the best results in the mismatched noise
case are obtained using the dictionaries pruned by CR at high SNR
levels and by KMED at low SNR levels. At -5 dB of test set B, RND
provides the best results which is explained by the minor impact of
the speech dictionaries on the recognition accuracy due to very poor
noise modeling. CR and KMED perform better than CUR and RND
on average similar to the matched noise case.

The RAs obtained on the development and test sets of CHIME-2
data are shown in Table 2. On the development set, KMED and CR
yield an average RA of 84.9% and 84.3% compared to 85.8% of the
N-REM baseline. CUR and RND have a comparable RA of 82.9%
and 83.0% respectively. On the test set, CR provides an average
RA of 84.2% which is slightly better than 83.6% of KMED. These
results are higher than 82.5% of CUR and 82.7% of RND.

From these results, it can be concluded that CR and KMED
techniques achieve effective exemplar selection from undercomplete
dictionaries by reducing the dictionary sizes significantly without a
significant loss in the recognition performance, especially at higher
SNR levels. Based on the geometrical interpretation of this exemplar
selection task as explained in [30], these techniques pick the exem-
plars that preserve the convex hulls formed by the speech dictionar-

ies in the positive orthant. As a result, the dictionaries pruned by
CR and KMED have a more precise description of each speech unit
in the high-dimensional feature space compared to the other tech-
niques and the noisy mixtures can still be separated accurately by
picking a few number noise and speech exemplars with much less
computational and memory requirements compared to the complete
dictionaries.

6. CONCLUSION
This paper investigates the performance of several exemplar selec-
tion approaches proposed for picking the most informative exem-
plars from undercomplete dictionaries which are used in the noise
robust exemplar matching framework. We first apply the collinear-
ity reduction approach, which has shown superior performance on
clean speech in previous work, to noisy speech to explore how ro-
bust the pruned dictionaries against background noise. Furthermore,
we investigate the performance of a k-medoids exemplar selection
approach which uses a novel dissimilarity measure, namely the sym-
metric alpha-beta divergence, in accordance with the recognizer. The
dictionaries pruned by both techniques have performed considerably
better than random pruning and the column selection of the CUR de-
composition which has provided impressive results on overcomplete
dictionaries.
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