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ABSTRACT

We study the problem of compressing recurrent neural net-
works (RNNs). In particular, we focus on the compression
of RNN acoustic models, which are motivated by the goal
of building compact and accurate speech recognition systems
which can be run efficiently on mobile devices. In this work,
we present a technique for general recurrent model compres-
sion that jointly compresses both recurrent and non-recurrent
inter-layer weight matrices. We find that the proposed tech-
nique allows us to reduce the size of our Long Short-Term
Memory (LSTM) acoustic model to a third of its original size
with negligible loss in accuracy.

Index Terms— model compression, LSTM, RNN, SVD,
embedded speech recognition

1. INTRODUCTION

Neural networks (NNs) with multiple feed-forward [1, 2] or
recurrent hidden layers [3, 4] have emerged as state-of-the-
art acoustic models (AMs) for automatic speech recognition
(ASR) tasks. Advances in computational capabilities coupled
with the availability of large annotated speech corpora have
made it possible to train NN-based AMs with a large number
of parameters [5] with great success.

As speech recognition technologies continue to improve,
they are becoming increasingly ubiquitous on mobile devices:
voice assistants such as Apple’s Siri, Microsoft’s Cortana,
Amazon’s Alexa and Google Now [6] enable users to search
for information using their voice. Although the traditional
model for these applications has been to recognize speech
remotely on large servers, there has been growing interest
in developing ASR technologies that can recognize the in-
put speech directly “on-device” [7]. This has the promise to
reduce latency while enabling user interaction even in cases
where a mobile data connection is either unavailable, slow
or unreliable. Some of the main challenges in this regard
are the disk, memory and computational constraints imposed
by these devices. Since the number of operations in neural
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networks is proportional to the number of model parameters,
compressing the model is desirable from the point of view of
reducing memory usage and power consumption.

In this paper, we study techniques for compressing re-
current neural networks (RNNs), specifically RNN acoustic
models. We demonstrate how a generalization of conven-
tional inter-layer matrix factorization techniques (e.g., [8,
9]), where we jointly compress both recurrent and inter-layer
weight matrices, allows us to compress acoustic models up
to a third of their original size with negligible loss in accu-
racy. While we focus on acoustic modeling, the techniques
presented can be applied to RNNs in other domains, e.g.,
handwriting recognition [10] and machine translation [11] in-
ter alia. The technique presented in this paper encompasses
both traditional recurrent neural networks (RNNs) as well as
Long Short-Term Memory (LSTM) neural networks.

In Section 2, we review previous work that has focussed
on techniques for compressing neural networks. Our pro-
posed compression technique is presented in Section 3. We
examine the effectiveness of proposed techniques in Sec-
tions 4 and 5. Finally, we conclude with a discussion of our
findings in Section 6.

2. RELATED WORK

There have been a number of previous proposals to compress
neural networks, both in the context of ASR as well as in the
broader field of machine learning. We summarize a number
of proposed approaches in this section.

It has been noted in previous work that there is a large
amount of redundancy in the parameters of a neural network.
For example, Denil et al. [12] show that the entire neural net-
work can be reconstructed given the values of a small number
of parameters. Caruana and colleagues show that the output
distribution learned by a larger neural network can be approx-
imated by a neural network with fewer parameters by train-
ing the smaller network to directly predict the outputs of the
larger network [13, 14]. This approach, termed “model com-
pression” [13] is closely related to the recent “distillation”
approach proposed by Hinton et al. [15]. The redundancy in
a neural network has also been exploited in the HashNet ap-
proach of Chen et al. [16], which imposes parameter tying in
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network based on a set of hash functions.
In the context of ASR, previous approaches to acoustic

model compression have focused mainly on the case of feed-
forward DNNs. One popular technique is based on sparsify-
ing the weight matrices in the neural network, for example, by
setting weights whose magnitude falls below a certain thresh-
old to zero [1] or based on the second-derivative of the loss
function in the “optimal brain damage” procedure [17]. In
fact, Seide et al. [1] demonstrate that up to two-thirds of the
weights of the feed-forward network can be set to zero with-
out incurring any loss in performance. Although techniques
based on sparsification do decrease the number of effective
weights, encoding the subset of weights which can be ‘zeroed
out’ requires additional memory. Further, if the weight ma-
trices are represented as dense matrices for efficient computa-
tion, then the parameter savings on disk will not translate in to
savings of runtime memory. Other techniques to reduce the
number of model parameters is based on changing the neu-
ral network architecture, e.g., by introducing bottleneck lay-
ers [18] or through a low-rank matrix factorization layer [19].
We also note recent work by Wang et al. [20] which uses a
combination of singular value decomposition (SVD) and vec-
tor quantization to compress acoustic models.

The methods investigated in our work are most similar to
previous work that has examined using SVD to reduce the
number of parameters in the network in the context of feed-
forward DNNs [8, 9, 21]. As we describe in Section 3, our
methods can be thought of as an extension of the techniques
proposed by Xue et al. [8], wherein we jointly factorize both
recurrent and (non-recurrent) inter-layer weight matrices in
the network.

3. MODEL COMPRESSION

In this section, we present a general technique for compress-
ing individual recurrent layers in a recurrent neural network,
thus generalizing the methods proposed by Xue et al. [8].

We describe our approach in the most general setting of
a standard RNN. We denote the activations of the l-th hidden
layer, consisting of N l nodes, at time t by hl

t ∈ RN l

. The
inputs to this layer at time t – which are in turn the activations
from the previous layer or the input features – are denoted by
hl−1
t ∈ RN l−1

. We can then write the following equations
which define the output activations of the l-th and (l + 1)-th
layers in a standard RNN:

hl
t = σ(W l−1

x hl−1
t + W l

hh
l
t−1 + bl) (1)

hl+1
t = σ(W l

xh
l
t + W l+1

h hl+1
t−1 + bl+1) (2)

where, bl ∈ RN l

and bl+1 ∈ RN l+1

represent bias vec-
tors, σ(·) denotes a non-linear activation function, and W l

x ∈
RN l+1×N l

and W l
h ∈ RN l×N l

denote weight matrices that
we refer to respectively as the inter-layer and the recurrent

Fig. 1. The initial model (Figure (a)) is compressed by jointly
factorizing recurrent (W l

h) and inter-layer (W l
x) matrices, us-

ing a shared recurrent projection matrix (P l) [3] (Figure (b)).

weight matrices, respectively1. Since our proposed approach
can be applied independently for each recurrent hidden layer,
we only describe the compression operations for a particu-
lar layer l. We jointly compress the recurrent and inter-layer
matrices corresponding to a specific layer l by determining
a suitable recurrent projection matrix [3], denoted by P l ∈
Rrl×N l

, of rank rl < N l such that, W l
h = Zl

hP
l and W l

x =
Zl
xP

l, thus allowing us to re-write (1) and (2) as,

hl
t = σ(W l−1

x hl−1
t + Zl

hP
lhl

t−1 + bl) (3)

hl+1
t = σ(Zl

xP
lhl

t + W l+1
h hl+1

t−1 + bl+1) (4)

where, Zl
h ∈ RN l×rl and Zl

x ∈ RN l+1×rl . This compression
process is depicted graphically in Figure 1.

We note that sharing P l across the recurrent and inter-
layer matrices allows for more efficient parameterization of
the weight matrices; as shown in Section 5, this does not re-
sult in a significant loss of performance. Thus, the degree
of compression in the model can be controlled by setting the
ranks rl of the projection matrices in each of the layers of the
network.

We determine the recurrent projection matrix P l, by first
computing an SVD of the recurrent weight matrix, which we
then truncate, retaining only the top rl singular values (de-
noted by Σ̃l

h) and the corresponding singular vectors from U l
h

and V l
h (denoted by Ũ l

h and Ṽ l
h, respectively):

W l
h = U l

hΣl
hV

l
h

T ≈
(
Ũ l
hΣ̃l

h

)
Ṽ l
h

T

= Zl
hP

l (5)

where Zl
h = Ũ l

hΣ̃l
h and P l = Ṽ l

h

T

. Finally, we determine
Zl
x, as the solution to the following least-squares problem:

Zl
x = arg min

Y
‖Y P l −W l

x‖2F (6)

1The equations are slightly more complicated when using LSTM cells in
the recurrent layer, but the basic form remains the same. See Section 3.1.
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where, ‖X‖F denotes the Frobenius norm of the matrix. In
pilot experiments we found that the proposed SVD-based ini-
tialization performed better than training a model with recur-
rent projection matrices (i.e., same model architecture) but
with random initialization of the network weights.

3.1. Applying our technique to LSTM RNNs

Generalizing the procedure described above in the context
of standard RNNs to the case of LSTM RNNs [3, 22, 23]
is straightforward. Using the notation in [3], note that the
recurrent-weight matrix W l

h in the case of the LSTM is the
concatenation of the four gate weight matrices, obtained by
stacking them vertically:

[Wim,Wom,Wfm,Wcm]
T

which represent respectively, recurrent connections to the in-
put gate, the output gate, the forget gate and the cell state.
Similarly, the inter-layer matrix W l

x is the concatenation of
the matrices:

[Wix,Wfx,Wox,Wcx]
T

which correspond to the input gate, the forget gate, the output
gate and the cell state (of the next layer). With these defini-
tions, compression can be applied as described in Section 3.
Note that we do not compress the “peep-hole” weights, since
they are already narrow, single column matrices and do not
contribute significantly to the total number of parameters in
the network.

4. EXPERIMENTAL SETUP

In order to determine the effectiveness of the proposed RNN
compression technique, we conduct experiments on a open-
ended large-vocabulary dictation task.

As we mentioned in Section 1, one of our primary moti-
vations behind investigating acoustic model compression is to
build compact acoustic models that can be deployed on mo-
bile devices. In recent work, Sak et al. have demonstrated
that deep LSTM-based AMs trained to predict either context-
independent (CI) phoneme targets [22] or context-dependent
(CD) phoneme targets [23] approach state-of-the-art perfor-
mance on speech tasks. These systems have two important
characteristics: in addition to the CI or CD phoneme labels,
the system can also hypothesize a “blank” label if it is unsure
of the identity of the current phoneme, and the systems are
trained to optimize the connectionist temporal classification
(CTC) criterion [24] which maximizes the total probability
of correct label sequence conditioned on the input sequence.
More details can be found in [22, 23].

Following [22], our baseline model is thus a CTC model:
a five hidden layer RNN with 500 LSTM cells in each layer,
which predicts 41 CI phonemes (plus “blank”). As a point
of comparison, we also present results obtained using a much

larger state-of-the-art ‘server-sized’ model which is too large
to deploy on embedded devices but nonethless serves as an
upper-bound performance for our models on this dataset. This
model consists of five hidden layers with 600 LSTM cells per
layer, and is trained to predict one of 9287 context-dependent
phonemes (plus “blank”).

Our systems are trained using distributed asynchronous
stochastic gradient descent with a parameter server [25].
The systems are first trained to convergence to optimize the
CTC criterion, following which these are discriminatively
sequence trained to optimize the state-level minimum Bayes
risk (sMBR) criterion [26, 27]. As discussed in Section 5,
after applying the proposed compression scheme, we further
fine-tune the network: first with the CTC criterion, followed
by sequence discriminative training with the sMBR criterion.
This additional fine-tuning step was found to be necessary
to achieve good performance, particularly as the amount of
compression was increased.

The language model used in this work is a 5-gram model
trained on∼100M sentences of in-domain data, with entropy-
based pruning applied to reduce the size of the LM down to
roughly 1.5M n-grams (mainly bigrams) with a 64K vocabu-
lary. Since our goal is to build a recognizer to run efficiently
on mobile devices, we minimize the size of the decoder graph
used for recognition, following the approach outlined in [7]:
we perform an additional pruning step to generate a much
smaller first-pass language model (69.5K n-grams; mainly
unigrams), which is composed with the lexicon transducer
to construct the decoder graph. We then perform on-the-fly
rescoring with the larger LM. The resulting models, when
compressed for use on-device, total about 20.3 MB, thus en-
abling them to be run many times faster than real-time on
recent mobile devices [28].

We parameterize the input acoustics by computing 40-
dimensional log mel-filterbank energies over the 8Khz range,
which are computed every 10ms over 25ms windowed speech
segments. The server-sized system uses 80-dimensional fea-
tures computed over the same range since this resulted in
slightly improved performance. Following [23], we stabi-
lize CTC training by stacking together 8 consecutive speech
frames (7 right context frames); only every third stacked
frame is presented as an input to the network.

4.1. Training and Evaluation Data

Our systems are trained on∼3M hand-transcribed anonymized
utterances extracted from Google voice search traffic (∼2000
hours). We create “multi-style” training data by syntheti-
cally distorting utterances to simulate background noise and
reverberation using a room simulator with noise samples
extracted from YouTube videos and environmental record-
ings of everyday events; 20 distorted examples are created
for each utterance in the training set. Systems are addition-
ally adapted using the sMBR criterion [26, 27] on a set of
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∼1M anonymized hand-transcribed (in-domain) dictation
utterances extracted from Google traffic, processed to gen-
erate “multi-style” training data as described above, which
improves performance on our dictation task. All results are
reported on a set of 13.3K hand-transcribed anonymized ut-
terances extracted from Google traffic from an open-ended
dictation domain.

5. RESULTS

In our experiments, we seek to determine the impact of the
proposed joint SVD-based compression technique on system
performance. In particular, we are interested in determining
how system performance varies as a function of the degree of
compression, which is controlled by setting the ranks of the
recurrent projection matrices rl as described in Section 3.

Notice that since the proposed compression scheme is ap-
plied to all hidden layers of the baseline system, there are
numerous settings of the ranks rl for the projection matrices
in each layer which result in the same number of total param-
eters in the compressed network. In order to avoid this ambi-
guity, we set the various projection ranks using the following
criterion: Given a threshold τ , for each layer l, we set the rank
rl of the corresponding projection matrix such that it corre-
sponds to retaining a fraction of at most τ of the explained
variance after the truncated SVD of W l

h. More specifically,
if the singular values in Σl

h in (5) are sorted in non-increasing
order as σl

1 ≥ σl
2 ≥ · · · ≥ σl

N , we set each rl as:

rl = arg max
1≤k≤N

{∑k
j=1 σ

l
j
2∑N

j=1 σ
l
j
2 ≤ τ

}
(7)

Choosing the projection ranks using (7) allows us to control
the degree of compression, and thus compressed model size
by varying a single parameter, τ . In pilot experiments we
found that this scheme performed better than setting ranks to
be equal for all layers (given the same total parameter bud-
get). Once the projection ranks rl have been determined for
the various projection matrices we fine-tune the compressed
models by first optimizing the CTC criterion, followed by se-
quence training with the sMBR criterion and adaptation on
in-domain data as described in Section 4.1. The results of our
experiments are presented in Table 1.

As can be seen in Table 1, the baseline system which pre-
dicts CI phoneme targets is only ∼10% relative worse than
the larger server-sized system, although it has half as many
parameters. Since the ranks rl are all chosen to retain a given
fraction of the explained variance in the SVD operation, we
also note that earlier hidden layers in the network appear to
have lower ranks than later layers, since most of the variance
is accounted for by a smaller number of singular values. It
can be seen from Table 1 that word error rates increase as the
amount of compression is increased, although performance of

System Projection ranks, rl Params WER
server - 20.1M 11.3

baseline - 9.7M 12.4
τ = 0.95 350, 375, 395, 405, 410 8.6M 12.3
τ = 0.90 270, 305, 335, 345, 350 7.2M 12.5
τ = 0.80 175, 215, 245, 260, 265 5.4M 12.5
τ = 0.70 120, 150, 180, 195, 200 4.1M 12.6
τ = 0.60 80, 105, 130, 145, 150 3.1M 12.9
τ = 0.50 50, 70, 90, 100, 110 2.3M 13.2
τ = 0.40 30, 45, 55, 65, 75 1.7M 14.4

Table 1. Word error rates (%) on the test set as a function
of the percentage of explained variance retained (τ ) after the
SVDs of the recurrent weight matrices W l

h in the hidden lay-
ers of the RNN.

the compressed systems are close to the baseline for moder-
ate compression (τ ≥ 0.7). Using a value of τ = 0.6, enables
the model to be compressed to a third of its original size, with
only a small degradation in accuracy. However, performance
begins to degrade significantly for τ ≤ 0.5. Future work will
consider alternative techniques for setting the projection ranks
rl in order to examine their impact on system performance.

6. CONCLUSIONS

We presented a technique to compress RNNs using a joint fac-
torization of recurrent and inter-layer weight matrices, gener-
alizing previous work [8]. The proposed technique was ap-
plied to the task of compressing LSTM RNN acoustic models
for embedded speech recognition, where we found that we
could compress our baseline acoustic model to a third of its
original size with negligible loss in accuracy. The proposed
techniques, in combination with weight quantization, allow us
to build a small and efficient speech recognizer that run many
times faster than real-time on recent mobile devices [28].
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