
TOWARDS IMPLICIT COMPLEXITY CONTROL USING VARIABLE-DEPTH DEEP
NEURAL NETWORKS FOR AUTOMATIC SPEECH RECOGNITION

Shawn Tan, Khe Chai Sim

National University of Singapore
shawntan@comp.nus.edu.sg,simkc@comp.nus.edu.sg

ABSTRACT

In speech recognition, a trade-off can be made between tran-
scription accuracy and computation time. In this paper, we
empirically measure the performance of using the softmax
outputs connected to different hidden layers of an already
fine-tuned deep neural network (DNN) and explore decoding
strategies that do not require computing all the hidden layers
of the DNN. We find that selecting the specific outputs from
a variable-depth DNN achieves better Phoneme Error Rates
(PER) on the TIMIT task than directly training a fixed-depth
DNN with the same number of layers. We experimented with
different ways of stopping the forward-propagation early, first
by using a threshold on the entropy of the respective outputs,
and formulate a ‘gating’ system on the hidden layers to pre-
dict when to stop the forward propagation.

Index Terms— Speech Recognition, Deep Learning

1. INTRODUCTION

DNN acoustic modeling has achieved state-of-the-art per-
formance in comparison to conventional Gaussian Mixture
Model (GMM) based systems. Hinton et. al. provides a good
summary of techniques used and their results in comparison
to GMMs [1]. However, the improved performance comes
at a computational cost. There has been work exploring the
capabilities of shallower networks which have been ‘com-
pressed’ from deeper networks to reduce computation cost
[2, 3, 4, 5]. Some approaches have also attempted to use
Singular Value Decomposition (SVD) on the layer weights to
reduce the complexity of the forward propagation [6, 7, 8].

As speech recognition continues to move towards hand-
held devices with limited computational power, the industry
has interests to keep computational costs low. We explore
methods of training DNNs that attempt to reduce required
computation steps by determining if a prediction is ready to be
made at any layer during the ‘computation’ being performed
by the DNN. We achieve this by experimenting with a variety
of methods: 1) We train an additional output for each of the
hidden layers, allowing us to decide during runtime which
output we want to use. 2) We look at metrics for deciding
when to stop forward propagation.

The rest of the paper is organised as follows. In Sec-
tion 2, a brief review of DNN complexity reduction tech-
niques for speech applications is given. Section 3 formu-
lates the Variable-depth DNN, and describes two layer selec-
tion criteria. Section 4 describes the method for learning the
performance-complexity tradeoff profile for VDNN. Experi-
mental results are reported in Section 5 and our work is con-
cluded in Section 6.

2. MODEL COMPLEXITY CONTROL

Senior and Lei [6] approached the problem by doing dimen-
sionality reduction on the final softmax layer. This not only
gave them gains in terms of word error rate (WER), but also
reduced the capacity required to store the model, and reduced
the model complexity. Their work was preceded by Sainath
et. al. [7], who also made use of matrix factorisation tech-
niques to reduce the number of parameters required in the
final softmax layer. Their work also experimented with ap-
plying the factorisation to multiple layers, which did not give
them considerable gains. Jian Xue et. al. [8] also perform
similar techniques without loss of accuracy to their models.

There are also some efforts at model compression from
Hinton et. al. [2] and Ba and Caruana [3]. This method
involves first training a deep neural network on the labels.
Once this is done, a shallower network with a comparable
number of parameters is used, and this new shallow network
is trained to mimic the deep network. This is done by training
the shallow network using the squared error of the logits –
the linear outputs of the final layer before softmax is applied
– and can also be achieved by using the cross-entropy cost
between the deep network and the shallow network. Similar
approaches were applied to speech data with some reductions
in WER by Li et. al. [4]. Romero et. al. [5] also developed
FitNets, which made use of similar techniques at the hidden
layers in order to learn deep but thinner nets that run faster.
Lee et. al. [9] has proposed using classification outputs at
hidden layers for computer vision tasks, and reports gains in
this approach.

5965978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

3. VARIABLE-DEPTH DEEP NEURAL NETWORKS

We propose Variable-depth Deep Neural Network (VDNN) to
provide the flexibility for controlling the model complexity on
demand at runtime. Let the hidden layer activations at layer l
be defined as:

hl = σ
(
W l

hh
l−1 + blh

)
(1)

where σ(·) is the sigmoid activation function, and W l
h and blh

are the weight matrix and bias vector for that layer. The sub-
script h indicates that these are the hidden layer parameters.
The corresponding outputs, ol, are given by

ol = softmax
(
W l

oh
l + blo

)
(2)

where W l
o and blo are the weight matrix and bias vector for

generating the outputs at layer l. Note that for a regular DNN,
there will only be one set of outputs, given by oL.

A simple strategy is to select a fixed layer for a specific
task. We refer to this as Fixed-layer VDNN (F-VDNN). It is
possible to select a different layer for each frame. A score, slt,
is defined for each layer, l, at each time frame, t. A simple
threshold-based selection criterion is adopted:

l∗t = arg min
{l:slt≥λl}

l (3)

where the selected layer for frame t, l∗t , is the lowest layer
whose score, slt, is above the selection threshold, λl. In the
following, we will consider two types of selection criteria.

3.1. Entropy-based criterion

Entropy is a metric of information content that can be used
to measure the certainty in the layer’s predictions — the as-
sumption is that a prediction is more likely to be right if the
output is more certain. The selection score based on the en-
tropy criterion can be formulated as:

slt = 1 −H(ol)/Hmax (4)

where the entropy function is given by

H(ol) = −
N∑
i=1

oli log oli (5)

andHmax = logN is the maximum entropy for N-dimensional
outputs with uniform probabilities. The resulting score ranges
between 0 and 1, with a higher score leading to a higher
chance of selection.

The issue with using the entropy-based criterion is that
the output layer has to be computed, and this incurs addi-
tional computational cost, resulting in more than two times
the number of matrix multiplications required by the end of
the forward propagation.

3.2. Gate-based criterion

In order to avoid computing the softmax outputs unnecessar-
ily, we perform logistic regression on the hidden layer activa-
tions to derive the selection score as follows:

slt = gl = σ(wl
gh

l + blg) (6)

This score ranges between 0 and 1, can be viewed as a ‘gate’
that controls the feedforward process. The additional compu-
tational costs incurred in calculating gl is negligible compared
to the overall computation needed to calculate entropy.

We can train the logistic regression parameters, wl
g and

blg , by treating them as part of the model parameters of the
VDNN. To integrate wl

g and blg into the VDNN model, we
define the following backward recursion to derive the output
of the VDNN:

ôl = glol + (1 − gl)ôl+1 (7)

where ôL = oL and L is the final output layer in the network.
This output of the VDNN is given by ô1, which is used to
compute the cross-entropy criterion for error back propaga-
tion training of the regression parameters.

Structuring the gates in this way guarantee that 1) the fi-
nal probabilities sum to 1: the base case is a standard soft-
max, and every subsequent combination is a convex sum of
two probability distributions, and that 2) in order for a good
prediction, the correct gate must be on, and the lower gates in
the network take precedence.

4. LEARNING PERFORMANCE-COMPLEXITY
TRADEOFFS

Given the score for each layer at each time, slt, and the corre-
sponding accuracy, ylt, we can analyse the tradeoffs between
the accuracy performance and the model complexity (in terms
of the number of layers used) as a function of the selection
threshold, λ. To simplify the analysis, we will consider using
a global selection threshold for all the layers.

Therefore, it is necessary to normalise the scores so that
a consistent decision can be made across different layers. We
normalise the scores such that the optimum decision (which
yields the highest classification accuracy for each individual
layer) is 0.5. First, we find the optimum decision for each
layer as follows:

θl = arg max
θ

1

T

T∑
t=1

alt(θ) (8)

where the accuracy given the threshold, θ, for layer l at time
t is given by

alt(θ) =

{
ylt if slt ≥ θ

1 − ylt otherwise (9)

5966

Once the optimum thresholds are determined, the scores
are normalised as follows:

s̃lt =
(1 − θl)slt

(1 − θl)slt + (1 − slt)θ
l

(10)

The above equation will transform the scores such that s̃lt =
0.5 if slt = θl. In other words, the optimum decision is 0.5 for
all the layers after score normalisation.

Let us define the effective accuracy and number of layers
used for each layer recursively in terms of those of the layer
below it:

ãlt(θ) =

{
ylt if slt ≥ θ

ãl−1t (θ) otherwise
(11)

ñlt(θ) =

{
l if slt ≥ θ

ñl−1t (θ) otherwise
(12)

The boundary conditions are ã1t (θ) = y1t and ñ1t (θ) = 1.
Therefore, the effective accuracy and layer counts for the
overall model is given by

ā(θ) =
1

T

T∑
t=1

ãLt (θ) and n̄(θ) =
1

T

T∑
t=1

ñLt (θ) (13)

To create a tradeoff profile, we first group the scores from
all the layers and sort them in ascending order. Let v be a
vector denoting the sorted scores, v = [vk]

K
k=1, where K =

T ×L. We can then define a set of K − 1 possible thresholds
as:

λ̄k =
vk + vk+1

2
(14)

For each of these thresholds, the corresponding accuracy and
layer counts can be computed as āk = ā(λ̄k) and n̄k =
n̄(λ̄k), which effectively give us the tradeoff profile of the
system. In this work, the thresholds, λ̄k, and the correspond-
ing tradeoff profile, āk and n̄k are computed using validation
data used to train the DNN. At runtime, the model complex-
ity can be adjusted on demand by choosing the appropriate
threshold λ̄k. Suppose that the desired average number of
layers to be used is n̂, the threshold can be determined as

n̂ = λ̄k̂ where k̂ = arg min
k

∣∣∣n̄k − n̂
∣∣∣ (15)

It is possible to choose the threshold by optimising the
weighted average between the accuracy and model com-
plexity:

k̂ = arg max
k

[
(1 − α)āk − αn̄k

]
(16)

where α is the weight that can be adjusted to control the trade-
off between accuracy and model complexity.

Layer Frame Acc. % PER %
Oracle F-VDNN DNN F-VDNN

1 46.0 46.0 24.4 24.2
2 56.8 49.6 23.2 22.9
3 62.0 51.6 23.2 22.3
4 64.7 52.1 23.1 22.0
5 66.6 51.8 22.1 21.8
6 68.4 53.7 21.8 21.8

Table 1. Performance of the various outputs of F-VDNN.

5. EXPERIMENTS

The experiments in this paper are performed on the TIMIT
corpus with the training set of 462 speakers, without SA sen-
tences. A development set of 50 speakers are used for hy-
perparameter tuning and we report the results on the standard
core test set. The alignments used in DNN training are taken
from the GMM-HMM system using triphones, trained using
the Kaldi toolkit [10]. A standard DNN is first trained on 40
dimensional filterbank features and energies. These are ex-
tracted from the speech using a 25ms window and a 10ms
frame-shift. A delta of order 2 is appended, and the concate-
nated features are then spliced with a context window of 5
(11 frames in total). Cepstral mean and variance normalisa-
tion (CMVN) is then applied to the resulting feature vectors.
Each input frame is a vector of 1353 dimensions. Pre-training
is done using Stacked Denoising Autoencoders (SDAs). The
DNN used has 6 sigmoid hidden layers, with 1024 units per
layer, and 1874 senones as outputs. All the DNNs are trained
with a mini-batch size of 256. A softmax layer then is added
to each of the hidden layers. The parameters of the DNN are
frozen, and the parameters connecting the hidden layer to the
softmax output are trained using cross-entropy using the same
aligned labels as in the standard model. A set of correspond-
ing models starting from the pretrained weights are trained
with 1 through 6 hidden layers. All DNN systems are trained
with the Theano library [11].

Table 1 compares the performance of the various outputs
of VDNN. Column 2 shows the frame accuracies assuming
we chose the first layer with the correct prediction and Col-
umn 3 the frame accuracies on the validation set. Column 4
and 5 compare the phone error rate (PER) performance of
DNN and VDNN with comparable number of hidden lay-
ers. It is interesting to note that the regular DNN models
trained directly with the pretrained weights do not do as well
as those of the VDNN. In terms of computational costs, for-
ward propagation through both models are equivalent. The
VDNN model, encompasses 6 different output layers that we
can select at runtime to adjust model complexity.

We investigate dynamic layer selection using the entropy-
based and gate-based criteria, as outlined in Sections 3.1
and 3.2 respectively. Fig. 1 shows the score distributions of
the two criteria for each layer.

5967

Fig. 1. Score distributions for different layers: entropy-based
scores (left) and gate-based scores (right). The blue and
green curves correspond to the scores of the correctly and
incorrectly classified frames respectively.

Fig. 2. Frame classification accuracy against the average lay-
ers used.

Fig. 2 shows the tradeoffs between frame accuracy and the
average number of layers used for F-VDNN, entropy-based
VDNN and gate-based VDNN. The tradeoff curves for the
VDNNs are computed using the method described in Sec-
tion 4. As expected, the entropy-based VDNN achieved con-
sistently the best frame accuracy performance for different av-
erage number of layers used. The Gate-based VDNN model
shows comparable performance compared to the F-VDNN.

We compared the tradeoffs between PER performance
and the average number of layers used for various mod-
els in Fig. 3. As discussed before, the F-VDNN performs
better compared to the DNN models with the same model
complexity. Both the entropy-based and Gate-based VDNN
models achieved similar performance compared to the F-
VDNN model. The VDNN models offers a more fine-grained
complexity control at runtime.

Figure 4 shows a histogram of the distribution of layers

Fig. 3. The plot of PER against average layers used.

Fig. 4. Distribution of the layer usage for the various systems.

used during test time for each of the thresholds set for the
Gate-based VDNN. The layer counts are skewed toward the
first and the final layer. This may be because the final lay-
ers give a good classification while the classifications at the
first layer are compensating, resulting in a lower average layer
count .

6. CONCLUSION

In this paper, we investigated variable-depth DNN (VDNN)
that offers the flexibility for controlling the model complex-
ity at runtime. One interesting observation from this work is
that the intermediate outputs from a VDNN achieved better
phone recognition performance compared to a regular DNN
with comparable number of hidden layers. As the gating cri-
terion for stopping forward propagation requires a fair amount
of fine-tuning to get working, a simple approach for creating
models from already trained models is to simply train a linear
classifier over a lower hidden layer of the original network.
However, the entropy criterion does show that there is suffi-
cient signal at the lower layers to determine if a classification
can be used at a lower layer, so the authors remain optimistic
about the feasibility of a gating system.

5968

7. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups,” Signal Processing Magazine, IEEE,
vol. 29, no. 6, pp. 82–97, 2012.

[2] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
Knowledge in a Neural Network,” pp. 1–9.

[3] L. J. Ba and R. Caurana, “Do Deep Nets Re-
ally Need to be Deep ?” arXiv preprint
arXiv:1312.6184, pp. 1–6, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6184

[4] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning
small-size dnn with output-distribution-based criteria,”
in Proc. Interspeech, 2014.

[5] A. Romero, N. Ballas, S. E. Kahou, A. Chassang,
C. Gatta, and Y. Bengio, “Fitnets: Hints for thin deep
nets,” arXiv preprint arXiv:1412.6550, 2014.

[6] A. Senior and X. Lei, “Fine context, low-rank, softplus
deep neural networks for mobile speech recognition,”
ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, pp. 7644–
7648, 2014.

[7] T. N. . Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran, “Low-Rank Matrix Factoriza-
tion for Deep Neural Network Training With High-
Dimensional Output Targets,” Icassp2013, pp. 6655–
6659, 2013.

[8] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural
network acoustic models with singular value decompo-
sition.” in INTERSPEECH, 2013, pp. 2365–2369.

[9] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and
Z. Tu, “Deeply-supervised nets,” arXiv preprint
arXiv:1409.5185, 2014.

[10] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlı́ček,
Y. Qian, P. Schwarz et al., “The kaldi speech recogni-
tion toolkit,” 2011.

[11] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-
canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio, “Theano: a CPU and GPU math expression
compiler,” in Proceedings of the Python for Scientific
Computing Conference (SciPy), Jun. 2010, oral Presen-
tation.

5969

