
LEARNING COMPACT RECURRENT NEURAL NETWORKS

Zhiyun Lu∗1, Vikas Sindhwani2, Tara N. Sainath2

1 University of Southern California, Los Angeles, CA, USA
2 Google, Inc. New York, NY, USA

zhiyunlu@usc.edu, {sindhwani,tsainath}@google.com

ABSTRACT

Recurrent neural networks (RNNs), including long short-term mem-
ory (LSTM) RNNs, have produced state-of-the-art results on a vari-
ety of speech recognition tasks. However, these models are often too
large in size for deployment on mobile devices with memory and
latency constraints. In this work, we study mechanisms for learn-
ing compact RNNs and LSTMs via low-rank factorizations and pa-
rameter sharing schemes. Our goal is to investigate redundancies in
recurrent architectures where compression can be admitted without
losing performance. A hybrid strategy of using structured matrices
in the bottom layers and shared low-rank factors on the top layers is
found to be particularly effective, reducing the parameters of a stan-
dard LSTM by 75%, at a small cost of 0.3% increase in WER, on a
2,000-hr English Voice Search task.

1. INTRODUCTION

Recurrent neural network architectures have become very popular
for automatic speech recognition (ASR) tasks in the past few years.
Architectures such as recurrent neural networks (RNNs), long short-
term memory networks (LSTMs) and convolutional, long-short term
memory networks (CLDNNs) have produced state of the art results
for many large vocabulary continuous speech recognition (LVCSR)
tasks [1, 2, 3].

In order to fully exploit thousands of hours of training data for
LVCSR tasks, the best performing neural network architectures are
typically very large in size. Consequently, they require long train-
ing time and consume a significant number of floating point oper-
ations per prediction once deployed. These characteristics are fur-
ther exacerbated in large, deep RNN architectures, which unroll the
network for a sequential number of time frames (i.e., 10-20), and
must compute the output from one time step before feeding into
the next time step. This situation is at odds with the need to en-
able high-performance on-device speech recognition on storage and
power constrained mobile phones for which compact, small-sized
models are strongly preferred.

Numerous approaches have recently been proposed in the model
compression literature to build compact neural network models with
fast training and prediction speed. A popular technique is low-rank
matrix factorization [2, 4, 5], which attempts to compress neural net-
work layers by representing them as matrices with low-rank. This
was shown to reduce parameters by 30-50% for DNNs with no loss
in accuracy for LVCSR tasks. Other techniques include inducing
zeros in the parameter matrices via sparsity regularizers [6]; storing
weights in low fixed-precision formats [7, 8]; using specific param-

*The author performed the work as a summer intern at Google, NYC.

eter sharing mechanisms [9, 10], or training smaller models on soft
outputs of larger models [11].

The dominant attention in this literature has so far been on re-
ducing the size of fully connected and convolutional architectures
(DNNs and CNNs). Given the importance of recurrent architectures
in the speech community, the goal of this work is to explore compact
architectures for deep RNNs and LSTMs. Several open questions
immediately arise in this context: where precisely is the redundancy
in recurrent architectures for speech recognition tasks? Which com-
pact architectural variations retain the most performance? How
should size constraints vary across layers, between recurrent and
feedforward weights, and between different gates in a recurrent
model? Our contributions in this paper are as follows:
• We are the first to undertake a systematic study of various new

compact architectures for RNNs and LSTMs. Specifically, we
compare the effectiveness of low-rank models [2, 4] and various
parameter sharing schemes implemented using hashing [9] and
structured matrices [10]. Note that sparsity promoting regulariz-
ers and the use of low-precision storage formats are complemen-
tary to our study and could yield even more compact models.

• Our investigation reveals the following: (i) for aggressive reduc-
tion of parameters in the bottom layers, Toeplitz-like structured
matrices [10] outperform Hashing based schemes and low-rank
factorizations, (ii) shared low-rank factors [2] are very effective
for parameter reduction across the network, (iii) a particularly
effective hybrid strategy for building compact LSTMs - using
Toeplitz-like structured matrices [10] in bottom layers and pro-
jection layers involving shared low-rank factors in the upper lay-
ers – can save 75% parameters with 0.3% increase in Word Error
Rate (WER), compared to a full LSTM, (iv) LSTMs are relatively
insensitive to whether compression is applied to recurrent or non-
recurrent weights, and similarly so for input/output/forget gates;
on the other hand, the cell state is critical to preserve for better
performance.

2. RECURRENT NEURAL NETS

We start by setting some notations and by giving an overview of the
basic RNN and LSTM architectures.

RNN: An RNN maps an input sequence x = (x1, . . . , xT ) to output
sequence y = (y1, . . . , yT ). At each time step t ∈ T , the RNN is
modeled with the following equations for the hidden unit hl

t in each
layer l ∈ {1, . . . , L} and the output yt, where h0

t = xt.

hl
t = σ[W lhl−1

t + U lhl
t−1 + bl] l = 1, . . . , L

yt = softmax[WL+1hL
t + bL+1] (1)

5960978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



We will refer to Equation 1 as RNN full model. We call U l as recur-
rent weights, and W l as feedforward or non-recurrent weights.

LSTM: A LSTM is an alternative model that has been used to ad-
dress vanishing/exploding gradient issues with RNN, and to model
longer-term temporal dependencies [12]. For each time step t ∈ T
and layer l ∈ {1, . . . , L}, the LSTM sequence to sequence mapping,
which includes the forget gate [13] and peephole connection [14], is
described as follows (as above h0

t = xt).

ilt =σ[W
l
ih

l−1
t + U l

ih
l
t−1 + bli +D(vli)c

l
t−1] input gate (2)

f l
t =σ[W l

fh
l−1
t + U l

fh
l
t−1 + blf +D(vlf )c

l
t−1] forget gate (3)

clt =f
l
t · clt−1 + ilt tanh[W

l
ch

l−1
t + U l

ch
l
t−1 + blc] cell state (4)

olt =σ[W
l
oh

l−1
t + U l

oh
l
t−1 + blo +D(vlo)c

l
t] output gate (5)

hl
t =o

l
t · tanh[clt] cell output (6)

The output of the network is given by,

yt = softmax[WL+1hL
t + bL+1].

The peephole connection D(vli) is a diagonal matrix with vli as its
diagonal. We will refer to Equations 2, 3, 4, 5 as input gate, forget
gate, cell state and output gate respectively.

3. PARAMETER REDUCTION SCHEMES

We now describe various parameter reduction methods explored in
this work, to make the recurrent architectures described in Section 2
more compact. For sake of simplicity, we will refer to the generic
matrix we want to compress asW , which is of sizem×n. The goal
of the compression schemes is to reduce the number of parameters
of W , namely mn.

3.1. Low Rank Factorization

In a low-rank compression scheme, we assume that matrix W has
rank r. Then there exists [15] a factorization W =Wa ×Wb where
Wa is a full-rank matrix of size m× r and Wb is a full-rank matrix
of size r × n. Thus, we replace matrix W by matrices Wa and Wb

which is equivalent to replacing a fully connected layer with a lin-
ear bottleneck layer. Notice there is no non-linearity (i.e. sigmoid)
between matrices Wa and Wb. A low-rank decomposition of Equa-
tion 1 for recurrent and feedforward matrices U l and W l, for layer
l ∈ {1, . . . , L}, is shown in Equation 7.

hl
t = σ[W l

aW
l
bh

l−1
t + U l

aU
l
bh

l
t−1 + bl] (7)

We can reduce the number of parameters of the system so long as
the number of parameters in Wa (i.e., mr) and Wb (i.e., rn) is less
than W (i.e., mn). Low-rank matrix factorization was first explored
for speech in [4], where it was found DNN models could be reduced
by 30-50% with no loss in accuracy. Furthermore, in the context
of DNNs, [5] explored computing the singular-value-decomposition
(SVD) of a full matrix to learn the two smaller low-rank matrices.

3.2. Sharing Low-rank across Layers: Projection Model

More recently, [2] shared the low-rank factor across layers of the
recurrent architecture. To be more specific, we require W l

b = U l−1
b

when we apply low rank to both U l−1 and W l as in Equation 7. We
can rewrite Equation 1 for RNNs as

hl
t = σ[W l

am
l−1
t + U l

am
l
t−1 + bl]

ml
t = U l

bh
l
t l = 1, . . . , L (8)

yt = softmax[WL+1mL
t + bL+1] (9)

where m0
t = xt. ml

t, the low rank output in Equation 8, can be seen
as a linear projection of the original hidden layer, which is shared
across layers. We refer to this as a projection compression scheme.

The projection model is compact with weight sharing. Besides,
since the projection weight U l−1

b is shared between U l−1 and W l,
its gradient also receives error signals from both factors. The error
component of U l−1

b coming from W l is closer to the output, com-
pared to that of U l−1, which makes the learning of recurrent connec-
tion easier in the projection model (Equation 9) compared to the full
model (Equation 1). Therefore, the projection model regularizes the
full model with fewer number of parameters and facilitates learning
through weight sharing.

Similarly for LSTM, we can modify Equation 6 to be

hl
t = P lolt · tanh[clt] projection node (10)

which projects the cell clt down to hl
t of lower dimensionality, with

P l having a similar interpretation to U l
b in Equation 8. Then the

projection node hl
t will feed forward to next layer and recurrently to

the next time step of the same layer, for all gates and cell activations
in Equation 2-5. We refer the reader to [2] for detailed equations
regarding the LSTM projection model.

3.3. HashedNets

The HashedNets scheme was recently proposed in [9] to reduce
memory consumption of DNN layers for computer vision tasks.
Here, we assume that the matrix W has only k unique parameter
values, instead of mn. The connections in W are randomly grouped
together and hashed into one bucket of length-k parameter vector v,
Wij = vh(i,j), where h(i, j) : N× N→ {1, . . . , k} is a predefined
hashing function. vm is shared among all entries of Wij where
h(i, j) = m in both feedforward and back-propagation [9].

To be consistent with other methods, we use pseudo rank r for
HashedNets to refer to k = 2nr number of parameters. We will
apply this hashing trick to the U l and W l matrices for RNNs.

3.4. Toeplitz-like Structured Matrices

Recently, [10] proposed a new family of parameter sharing schemes
for small-footprint deep learning based on structured matrices char-
acterized by the notion of displacement operators [16]. Unlike
HashedNets where weights are randomly grouped, parameter shar-
ing mechanisms in structured matrices are highly specific and de-
terministic. The structure can be exploited for fast matrix-vector
multiplication (forward passes) and also gradient computations dur-
ing back-propagation typically using Fast Fourier Transform like
operations. To get a flavor of this approach, consider Toeplitz
matrices where parameters are tied along diagonals.

t0 t−1 . . . t−(n−1)

t1 t0 . . .
...

...
...

... t−1

tn−1 . . . t1 t0


It is known that n×n Toeplitz matrices admitO(n log n) time

to compute matrix-vector products, which are essentially equivalent
to performing linear convolutions. Toeplitz matrices also have the
property that via certain shift and scale operations as implemented
by specific displacement operators, they can be linearly transformed
into matrices of rank less than or equal to 2. Thus, the so called
displacement rank of all Toeplitz matrices is up to 2. [10] propose
learning parameter matrices that are generalizations of the Toeplitz
structure by allowing the displacement rank r to be higher. This class

5961



of matrices are called Toeplitz-like and they include products and
inverses of Toeplitz matrices, and their linear combinations, which
can be interpreted as composition of convolutions and deconvolu-
tions. These matrices can be parameterized via a sum over products
of r Circulant and Skew-circulant matrices. The displacement rank r
serves as a knob on modeling capacity. High displacement rank ma-
trices are increasingly unstructured. [10] show that on mobile speech
recognition problems, such transforms are highly effective for learn-
ing compact Toeplitz-like layers compared to fully connected DNNs.

With displacement rank r, there are 2nr free parameters in
the Toeplitz-like structured matrix. We will apply the Toeplitz-like
transform toU l,W l in RNNs, andW l

i ,W
l
f ,W

l
c ,W

l
o, U

l
i , U

l
f , U

l
c, U

l
o

to LSTMs in our experiment.

Summary: Table 1 gives a summary of different methods with
its number of parameters as a function of an appropriate notion of
rank. For simplicity we assume m = n. For projection, the number
of parameters is averaged across layers where low-rank factors are
shared.

method knob # of params
Low-rank rank r 2nr
Projection rank r 3

2
nr

HashedNets pseudo-rank r 2nr
Toeplitz-like displacement rank r 2nr

Table 1: comparison of compression methods

4. EXPERIMENTAL DETAILS

We report two sets of experiments: with RNNs on a medium-sized
noisy training set of 300 thousand English-spoken utterances (300
hours), and with LSTMs on a larger training set of 3 million ut-
terances (2,000 hours). These data sets are created by artificially
corrupting clean utterances using a room simulator, adding vary-
ing degrees of noise and reverberation such that the overall SNR
is between 5dB and 30dB. The noise sources are from YouTube
and daily life noisy environmental recordings. All training sets
are anonymized and hand-transcribed, and are representative of
Google’s voice search traffic. The training sets is randomly split into
90% for model training, and 10% for heldout used to evaluate frame
accuracy. WER is reported on a noisy test set containing 30,000
utterances (over 20 hours).

The input feature for all models are 40-dimensional log-mel fil-
terbank features, computed every 10ms. All recurrent layers are
initialized with uniform random weights between −0.02 to 0.02.
The RNNs and LSTMs are unrolled for 20 time steps for training
with truncated backpropagation through time (BPTT). In addition,
the output state label is delayed by 5 frames, similar to [3].

All neural networks are trained with the cross-entropy criterion,
using the asynchronous stochastic gradient descent (ASGD) opti-
mization strategy described in [17]. All networks have 42 phone
output targets such that the output layer would have few parameters
and we could focus our attention on compressing other layers of the
network. We use a exponentially decaying learning rate, which starts
at 0.004 and has a decay rate of 0.1 over 15 billion frames. We ap-
ply gradient clipping from {1, 10, 100} in RNN training, and cell
clipping at 50 for LSTM training.

5. RESULTS

5.1. Learning Compact RNNs

5.1.1. Parameter reduction in bottom layers

We benchmark a full, standard RNN, which has 3 hidden layers with
600 cells per layer, and studied how we can reduce parameters rela-
tive to it with various compact architectures.

We compared different methods introduced in Section 3, with a
focus on how bottom layers can be heavily condensed. To be more
specific, we compress weight matrices U1,W 2, U2 of the first two
layers, down to rank r = 5 for low rank, HashedNets and Toeplitz-
like matrices, with the definition of rank shown in Table 1. Note that
r = 5 is very limited compared to the original 600 dimensionality.
1.85 million parameters of the baseline model is cut down to∼790k,
roughly 40% of its original size.

model compression # of params frame accuracy WER
full - 1.85m 73.26 43.5

low rank 5, 5, 600 790k 68.08 54.6
HashedNets 5, 5, 600 790k 70.09 49.2
Toeplitz-like 5, 5, 600 790k 70.79 48.4

Table 2: Learning different compact models for RNN

From Table 2, the Toeplitz-like transform is the most efficient to
compress bottom layers, which attains the lowest WER under similar
number of parameters. Given a fixed budget on model size, different
compression schemes make different assumptions while compress-
ing. The low rank assumption performs the poorest because rank 5 is
too constrained. HashedNets imposes a somewhat weaker structure
on the parameters via random grouping, and also performs moder-
ately. On the other hand, a Toeplitz-like structured matrix with rank
5 can be interpreted as composition of convolutions and deconvo-
lutions, and performs the best to reduce parameters in the bottom
layers.

5.1.2. Parameter reduction across all layers with projection

We also benchmarked a low-rank model with shared factors [2] as
described in 3.2. Here, we use 100 projection nodes for m1,m2 and
200 nodes for m3. With just around 635k parameters, this model
achieves an frame accuracy of 73.72% and word error rate of 43.5%
matching the full RNN model with one-third the number of parame-
ters. This projection model shares weights and thus gradients across
all the layers and appears to be a more effective than the aggressive
compression of bottom layers alone using HashedNets, Toeplitz-like
matrices or untied low-rank models. One hypothesis we have is that
perhaps Toeplitz-like compression, with its convolution interpreta-
tion, is better for lower layers, while shared low-rank factorizations
are more effective for higher layers. This experiment was found to
be difficult to run with RNNs, since in our experiments increasing
the number of RNN layers exacerbated the vanishing/exploding gra-
dient problem. Hence, we reserve this set of experiments for the
next section, where we compress a deep LSTM with 5 layers, which
exhibited more stable optimization behavior for this setting.

5.1.3. Displacement rank of Toeplitz-like transfrom

Next we explore the behavior of Toeplitz-like matrix by changing
the displacement rank r. In Table 3, the WER improves when we
compress U1,W 2, U2 to higher ranks, at the cost of increasing pa-
rameters and training time. From the column of seconds per ASGD
optimization step, the training time is proportional to the displace-
ment rank of Toeplitz-like matrix. As rank 5 gives us a reasonable

5962



tradeoff between performance and training time, we will use it for
further structured matrix experiments.

rank # of params sec. per step frame accuracy WER
2 779k 0.13 70.41 49.6
5 790k 0.28 70.79 48.4
10 808k 0.50 70.99 47.9

Table 3: Toeplitz-like matrices with different rank

5.2. Learning Compact LSTMs

In light of the observations from the RNN experiments, we mainly
focus on LSTM with projection layer (Equation 10) and Toeplitz-
like transforms in bottom layers for compact LSTM experiments.
The full LSTM model has 5 hidden layer, with 500 hidden unit per
layer. For projection model, we introduce projection P 1 − P 5, as
in Equation 10, to all hidden layers, and the two numbers in col-
umn “compression” of Table 4 indicate the dimensions of h1 to h4,
and h5 respectively. For Toeplitz-like transform, we start from a
projection model with 100 nodes in h1 to h4, and 200 nodes in
h5, and replace weight matrices with Toeplitz-like matrices progres-
sively. ‘U j

x ’ in column “compression” stands for that all four weights
U j

i , U
j
f , U

j
c , U

j
o in recurrent connections of layer j are compressed.

We reduce all gates and cell state equally. Note that when we com-
press U l−1

x and W l
x at the same time, projection layer P l−1 will be

removed. Column “projection” details the projection layers in the
model.

model proj. compression # of params WER
h1 − h4, h5

full - - 9.12m 33.1
proj. P 1 − P 5 100, 200 2.41m 33.6
proj. P 1 − P 5 90, 200 2.23m 33.8
proj. P 1 − P 5 80, 200 2.05m 34.2
Toep. P 1 − P 5 U1

x 2.23m 33.4
Toep. P 2 − P 5 U1

x ,W
2
x 2.00m 33.5

Toep. P 2 − P 5 U1
x ,W

2
x , U

2
x 1.82m 33.9

Toep. P 3 − P 5 U1
x ,W

2
x , U

2
x ,W

3
x 1.59m 35.4

Table 4: Learning different compact models for LSTM

For both projection model and Toeplitz-like transform, the per-
formance drops as we reduce the number of parameters. However,
we see that given a fixed model size, it is more effective to compress
lower layers with Toeplitz-like matrices of low displacement rank,
which has more of a convolutional interpretation, compared to pro-
jection compression on all layers with moderate rank. We see this is
quite different than the behavior of compression on a shallow RNN
(Section 5.1.2), since we can afford to have a deeper network with
LSTM . Overall, with the combination of Toeplitz-like transform and
projection, we are able to compress the LSTM model down by 75%
to 2.2m parameters, with only a 0.3% increase in WER to 33.4.

Next, we try to answer the question of where in the LSTM we
should apply the compression. We compare the effect of compress-
ing recurrent weight U l or non-recurrent weight W l in Table 5.
“compression” lists all Toeplitz-like matrices, where all 4 gates are
compressed equally, and “projection” specifies projection layers in
the model. As we can see, it makes no significant difference whether
we compress recurrent or non-recurrent weight as long as the num-
ber of parameter matches.

Thus far we have compressed all gates in the same way.
However, different gates have different levels of importance in
LSTM [18] and perhaps less important gates can be compressed

compression projection # of params WER
U1

x ,W
2
x P 1 − P 5 2.05m 33.8

U1
x , U

2
x P 1 − P 5 2.05m 33.5

U1
x ,W

2
x , U

2
x ,W

3
x P 2 − P 5 1.64m 34.8

U1
x ,W

2
x , U

2
x , U

3
x P 2 − P 5 1.64m 34.7

Table 5: Compression of feedforward or recurrent weights in LSTM

more. Thus, we investigate how the WER is affected by reducing
different gates differently with Toeplitz-like matrices.

We take a LSTM projection model, which has 100 projection
nodes in h2 to h4, and 200 projection nodes in h5. All gates and
cell states of U1,W 2, U2 are Toeplitz-like matrices. We vary the
compression on cell state and gates of W 3 with Toeplitz-like trans-
forms, and record the change in WER. These models lie in between
the models of last two rows in Table 4, which has a huge jump in
WER from 33.9 to 35.4.

In Table 6, gates column indicates if input gate, forget gate, cell
state or output gate of W 3, is being compressed. Compressing the
cell state (Equation 4) makes a major difference, 0.4% in WER, for
LSTM performance. Compressing forget gate or not alone does not
show much impact with 0.1% increase in WER. But reducing in-
put gate, output gate and forget gate altogether, with 0.14m fewer
parameters, would make 0.5% worse in WER. Both [18, 19] notice
that removing forget gate would significantly hurt the performance,
and [19] finds that output gate is of the least importance. We do not
identify significant difference in compressing different gates in our
experiment, probably because we only change the gates for the third
layer input weights in a five-layer LSTM, and that rank 5 Toeplitz-
like matrices are sufficient to retain enough information for most
gates.

proj. compression compressed gates # of params WER
P 2 − P 5 U1

x ,W
2
x , U

2
x W 3

i ,W
3
f ,W

3
c ,W

3
o 1.64m 34.8

P 2 − P 5 U1
x ,W

2
x , U

2
x W 3

i ,W
3
f ,W

3
o 1.68m 34.4

P 2 − P 5 U1
x ,W

2
x , U

2
x W 3

i ,W
3
o 1.73m 34.3

P 2 − P 5 U1
x ,W

2
x , U

2
x − 1.82m 33.9

Table 6: Compression of different gates in LSTM

6. CONCLUSIONS

In this work, we studied how to build compact recurrent neural
networks for LVCSR tasks. In our RNN experiments, we noted
that Toeplitz-like structured matrices outperform HashedNets and
Low-rank bottleneck layers for aggressive parameter reduction in
the bottom layers. For LSTM parameter reduction, architecting
upper layers with projection nodes to moderate rank, and bottom
layers with Toeplitz-like transforms was found to be a particularly
effective strategy. With this strategy, we are able to build a compact
model with 75% fewer parameters than a standard LSTM model,
while only incurring 0.3% increase in WER. Compressing recurrent
or non-recurrent weight does not make significant difference. We
find that LSTM performance is sensitive to cell state compression,
making a noticeable change in WER.

7. ACKNOWLEDGEMENTS

Thank you to Rohit Prabhavalkar, Ouais Alsharif and Hasim Sak for
useful discussions related to model compression and LSTMs.

5963



8. REFERENCES

[1] G. Saon, H. Soltau, A. Emami, and M. Picheny, “Unfolded
Recurrent Neural Networks for Speech Recognition,” in Inter-
speech, 2014.

[2] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Mem-
ory Recurrent Neural Network Architectures for Large Scale
Acoustic Modeling,” in Proc. Interspeech, 2014.

[3] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolu-
tional, Long Short-Term Memory, Fully Connected Deep Neu-
ral Networks,” in Proc. ICASSP, 2015.

[4] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and
B. Ramabhadran, “Low-Rank Matrix Factorization for Deep
Belief Network Training,” in Proc. ICASSP, 2013.

[5] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of Deep
Neural Network Acoustic Models with Singular Value Decom-
position,” in INTERSPEECH, 2013, pp. 2365–2369.

[6] M. Collins and P. Kohli, “Memory-bounded Deep Convolu-
tional Neural Networks,” in Proc. ICASSP, 2013.

[7] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and
Pritish Narayanan, “Deep Learning with Limited Numerical
Precision,” in Proc. ICML, 2015.

[8] M. Courbariaux, J.-P. David, and Y. Bengio, “Low-precision
Storage for Deep Learning,” in Proc. ICLR, 2015.

[9] Wenlin Chen, James T Wilson, Stephen Tyree, Kilian Q Wein-
berger, and Yixin Chen, “Compressing Neural Networks with
the Hashing Trick,” arXiv preprint arXiv:1504.04788, 2015.

[10] V. Sindhwani, T. N. Sainath, and S. Kumar, “Structured Trans-
forms for Small-footprint Deep Learning,” in Proc. NIPS,
2015.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge
in a Neural Network,” in Deep Learning and Representation
Learning Workshop, NIPS, 2014.

[12] Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-term
Memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[13] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins,
“Learning to Forget: Continual Prediction with LSTM,” Neu-
ral computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[14] F. Gers, J. Schmidhuber, et al., “Recurrent Nets that Time and
Count,” in Neural Networks, 2000. IJCNN 2000, Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference
on. IEEE, 2000, vol. 3, pp. 189–194.

[15] G. Strang, Introduction to Linear Algebra, Wellesley-
Cambridge Press, 4th edition, 2009.

[16] V. Pan, Structured Matrices and Polynomials: Unified Super-
fast Algorithms, Springer, 2001.

[17] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V.
Le, M.Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and
A.Y. Ng, “Large Scale Distributed Deep Networks,” in Proc.
NIPS, 2012.

[18] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k, Bas R
Steunebrink, and Jürgen Schmidhuber, “LSTM: A Search
Space Odyssey,” arXiv preprint arXiv:1503.04069, 2015.

[19] Wojciech Zaremba, “An Empirical Exploration of Recurrent
Network Architectures,” 2015.

5964


