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ABSTRACT

We describe a large vocabulary speech recognition system that is
accurate, has low latency, and yet has a small enough memory and
computational footprint to run faster than real-time on a Nexus 5
Android smartphone. We employ a quantized Long Short-Term
Memory (LSTM) acoustic model trained with connectionist tem-
poral classification (CTC) to directly predict phoneme targets, and
further reduce its memory footprint using an SVD-based compres-
sion scheme. Additionally, we minimize our memory footprint by
using a single language model for both dictation and voice com-
mand domains, constructed using Bayesian interpolation. Finally, in
order to properly handle device-specific information, such as proper
names and other context-dependent information, we inject vocab-
ulary items into the decoder graph and bias the language model
on-the-fly. Our system achieves 13.5% word error rate on an open-
ended dictation task, running with a median speed that is seven times
faster than real-time.

Index Terms— embedded speech recognition, CTC, LSTM,
quantization, model compression.

1. INTRODUCTION

Speech recognition for dictation, search, and voice commands has
become a standard feature on smartphones and wearable devices.
The vast majority of the literature devoted to improving accuracy for
these tasks assumes that speech recognition will be run in datacen-
ters on powerful servers. However, despite increases in speed and
the availability of mobile internet, speech recognition requests fre-
quently have high latency, or even completely fail, due to unreliable
or unavailable network connections. An embedded speech recogni-
tion system that runs locally on a mobile device is more reliable and
can have lower latency; however, it must be accurate and must not
consume significant memory or computational resources.

In this paper we extend previous work that used quantized deep
neural networks (DNNs) and on-the-fly language model rescoring
to achieve real-time performance on modern smartphones [1]. We
demonstrate that given similar size and computation constraints, we
achieve large improvements in word error rate (WER) performance
and latency by employing Long Short-Term Memory (LSTM) re-
current neural networks (RNNs), trained with connectionist tem-
poral classification (CTC) [2] and state-level minimum Bayes risk
(sMBR) [3] techniques. LSTMs are made small and fast enough
for embedded speech recognition by quantizing parameters to 8 bits,
by using context independent (CI) phone outputs instead of more
numerous context dependent (CD) phone outputs, and by using Sin-
gular Value Decomposition (SVD) compression [4, 5].

SVD has elsewhere been shown to be effective for speech pro-
cessing tasks [4, 6, 7] as have structured transforms [8] and low-rank
matrix factorizations [9]. Vector quantization has also been shown to
significantly reduce model size with only small accuracy losses [10],
however it is unclear whether this algorithm can be implemented in
a computationally efficient manner while minimizing runtime mem-
ory footprint. Such parameter reduction techniques have generally
been applied to DNNs and not RNNs. For embedded speech recog-
nition, some authors have avoided RNNs citing increased computa-
tional costs and instead evaluated methods for transferring knowl-
edge from RNNs to DNNs [11].

We present results in two very different domains: dictation and
voice commands. To keep the disk space requirements of the system
small, we experiment with language model interpolation techniques
that enable us to effectively share a single model across both do-
mains. In particular, we demonstrate how the application of bayesian
interpolation out-performs simple linear interpolation for these tasks.

Finally, we explore using language model personalization tech-
niques to improve voice command and dictation accuracy. Many
voice commands can be completed and executed on a device without
a network connection, or can easily be queued up to be completed
over an unreliable or slow network connection later in the back-
ground. For example, a command such as “Send an email message
to Darnica Cumberland: can we reschedule?” can be transcribed by
an embedded speech recognition system and executed later without
a perceptual difference to the user. Accurate transcription, however,
requires integrating personal information such as the contact name
“Darnica Cumberland” into the language model. We demonstrate
that the vocabulary injection and on-the-fly language model biasing
techniques from [12, 13] can significantly improve accuracy without
significant adverse computational overhead.

The remainder of this paper is organized as follows. We summa-
rize the baseline sytem in Section 2. Section 3 describes our tech-
niques to build a small but accurate acoustic model, Section 4 de-
scribes our LM training procedure and the interpolation techniques
used in our system, Section 5 describes the decoder. Section 6 de-
scribes how we handle context or device-specific information, and
finally Section 7 summarizes the footprint of our system. Conclu-
sions are presented in Section 8.

2. BASELINE SYSTEM

We model our baseline system after the embedded speech recog-
nition system presented in [1]. Instead of using a standard feed-
forward DNN, however, we use deep LSTM models which have
been shown to achieve state-of-the-art results on large-scale speech
recognition tasks [14, 15, 16]. The LSTM architecture of our base-
line consists of three hidden layers with 850 LSTM cells in each. We
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make use of a recurrent projection layer as described in [14] of size
450 for each of hidden layers. This LSTM is trained to predict 2,000
CD states, analogous to the system described in [1]. This system is
also trained to optimize the standard (CE) criterion on the training
set, with the output labels delayed by 5 frames [14].

The input features are 40-dimensional log mel-filterbank ener-
gies calculated on a 25ms window every 10ms. Unlike in [1], where
frames are stacked to provide right and left context to the net, we
rely on the LSTM’s memory capabilities and supply only one frame
every 10ms as input. This model was trained to optimize the stan-
dard cross-entropy (CE) criterion on the training set described in
Section 3.1, with frame-level labels derived from a larger system.

The language model presented in this work also follows along
the lines of [1]. The vocabulary size is restricted to 64K so that an
index into the lexicon only requires 16-bits of storage. The small de-
coder graph is constructed from a tiny LM containing 70K n-grams
(almost entirely of unigrams). During decoding the partial paths
are rescored on-the-fly with a large LM containing roughly 1.5M
n-grams. This rescoring LM is made extremely compact using the
LOUDS [17] compression mechanism. More details of the LM can
be found in Section 4.

3. ON-DEVICE ACOUSTIC MODELING

In this section we describe an LSTM configuration that can success-
fully be deployed to a mobile device and contrast this with the base-
line system described in Section 2.

In particular, the LSTM architecture that we investigate is a
CTC model [15, 16]: the system consists of five hidden layers with
500 LSTM cells in each, that predict 41 context independent (CI)
phoneme targets plus an additional “blank” target that can be hypoth-
esized if the system is unsure of the identity of the phoneme at the
current frame. The system is trained to optimize the connectionist
temporal classification (CTC) criterion [2] as described in [15, 16].

Similar to the baseline, we use standard 40-dimensional log mel-
filterbank energies over the 8Khz range, computed every 10ms on
25ms of input speech. In order to stabilize CTC training, our CTC
models use the strategy proposed in [16]: we stack together 8 con-
secutive frames (7 frames of right context) and only present every
third stacked frame as input to the network. In addition to stabilizing
CTC training, this has the additional benefit of speeding up compu-
tation since the network is only evaluated every 30ms.

3.1. AM Experiments

Our AMs are trained on 3M hand-transcribed anonymized utter-
ances extracted from Google voice search traffic (approximately
2,000 hours). All models in our work are trained using distributed
asynchronous stochastic gradient descent (ASGD) [18]. In or-
der to improve robustness to noise and reverberation, we generate
“multi-style” training data by synthetically distorting each training
utterance using a room simulator with a virtual noise source, to
generate 20 distorted versions of each utterance. Noise samples are
extracted from YouTube videos and environmental recordings of
daily events.

Results in this section are reported on a set of 13.3K anonymized
utterances in the domain of open-ended dictation extracted from
Google traffic. The LM used in these experiments was described
in Section 2 and detailed further in Section 4. We benchmark our
systems to determine runtime speed by decoding a subset of 100
utterances on a Nexus 5 smartphone which contains a 2.26 GHz

AM Setup WER Params Size RT50
LSTM 2,000 CD States 23.4 9.9M 39.4 MB 2.94
LSTM CTC CI Phones 19.4 9.7M 38.8 MB 0.64
+ sMBR 15.1 9.7M 38.8 MB 0.65
+ SVD Compression 14.8 3M 11.9 MB 0.22
+ adaptation 12.9 3M 11.9 MB 0.22
+ quantization 13.5 3M 3 MB 0.14
LSTM CTC (Server-size) 11.3 20.1M 80.4 MB -

Table 1. Word Error Rates (%) on an open-ended dictation task,
evaluating various acoustic models, using the same language model
described in Section 4, along with median RT factor.

quad-core CPU and 2 GB of RAM. We report median real-time
factors (RT50) on our test set. Our results are presented in Table 1.

As can be seen in Table 1, and consistent with previous
work [15], the CTC-trained LSTM model that predicts CI phones
outperforms the CE-trained LSTM that predicts 2,000 CD states.
Furthermore, although both systems are comparable in terms of the
number of parameters, the CTC-trained model is about 4× faster
than the CE-trained baseline. Sequence discriminative training with
the sMBR criterion [3, 19] further improves system performance by
20% relative to the CTC-trained sytem.

In order to reduce memory consumption further, we compress
our acoustic models using projection layers that sit between the out-
puts of an LSTM layer and both the recurrent and non-recurrent
inputs to same and subsequent layers [14]. Of crucial importance,
however, is that when a significant rank reduction is applied, it is
not sufficient to simply initialize the projection layer’s weight ma-
trix randomly for training with the CTC criterion. Instead we use
the larger ‘uncompressed’ model without the projection layer and
jointly factorize its recurrent and (non-recurrent) inter-layer weight
matrices at each hidden layer using a form of singular value decom-
position to determine a shared projection layer. This process yields
an initialization that results in stable convergence as described in de-
tail in [5]. In our system, we introduce projection matrices of rank
100 for the first four layers, and a projection matrix of rank 200 for
the fifth hidden layer. Following SVD compression, we once again
train the system to optimize the CTC criterion, followed by discrim-
inative sequence training with the sMBR criterion. As can be seen in
Table 1, the proposed compression technique allows us to compress
the AM by about 3×.

Finally, we note that adapting the AM using a set of 1M
anonymized hand-transcribed utterances from the domain of open-
ended dictation (processed to generate multi-style training as de-
scribed in Section 3.1) results in a further 12.8% relative improve-
ment over the SVD compressed models. The combination of all
of these techniques allows us to significantly improve performance
over the baseline system. For completeness, we also trained a DNN
system with topology described in [1]. As expected, this 2,000 CD
state DNN performed significantly worse than all of the LSTMs in
Table 1.

For reference, we also present results obtained using a much
larger ‘server-sized’ CTC model, which predicts 9287 CD phones
(plus “blank”), but is evaluated with the same LM and decoder graph
as our other systems, which serves as a sort of upperbound perfor-
mance on this task1.

1This model uses 80-dimensional filterbank features in the frontend, since
this resulted in slightly improved performance. Frame stacking and frame
skipping are as in the CI LSTM CTC model.
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3.2. Efficient Representation and Fast Execution

Since the 11.9 MB floating point neural network acoustic model
described above consumes a significant chunk of the memory and
processing-time, we quantize the model parameters (i.e. weights, bi-
ases) into a more compact 8-bit integer-based representation. This
quantization has an immediate impact on the memory usage, reduc-
ing the acoustic model’s footprint to a fourth of the original size.
The final footprint of our AM is 3 MB as shown in Table 1. Using
8-bit integers also has the advantage that we can also achieve 8-way
parallelism in many matrix operations on most mobile platforms.

Although we could have applied a number of compression
schemes [20, 21], with simplicity and performance in mind, and
validated by previous work [22], we adopt a uniform linear quan-
tizer that assumes a uniform distribution of the values within a given
range. First, we find the minimum and maximum values of the
original parameters. We then use a simple mapping formula which
determines a scaling factor that when multiplied by the parameters
spreads the values evenly in the smaller precision scale, thus ob-
taining a quantized version of the original parameters. The inverse
operation is used when converting a quantized value back to its
32-bit floating point equivalent.

During neural network inference, we operate in 8-bit integers
everywhere except in the activation functions and the final output of
the network, which remain in floating point precision (by convert-
ing between quantized 8-bit values and their 32-bit equivalents as
needed). Our quantization scheme and the inference computation
approach provides a 2× speed-up in evaluating our acoustic mod-
els as compared to the unquantized model, with only a small per-
formance degredation (compare ‘adaptation’ vs. ‘quantization’ in
Table 1).

4. ON-DEVICE LANGUAGE MODELLING

In this work, we focus on building a compact language model for
the domains of dictation and voice commands. To maintain a small
system footprint, we train a single model for both domains. As de-
scribed in Section 2, we limit the vocabulary size to 64K. Our lan-
guage models are trained using unsupervised speech logs from the
dictation domain (∼100M utterances) and voice commands domain
(∼2M utterances). The voice command utterances were extracted by
filtering general voice search queries through the grammars usually
used to parse voice commands at runtime. Those queries that parsed
were added to the training set. A Katz-smoothed 5-gram LM is then
trained and entropy-based pruning is employed to shrink the LM to
the sizes described in Section 2.

In addition to the dictation test set described in Section 3, in this
section we present results on a voice commands test set. This set
includes utterances from 3 types of commands: Device (∼2K utter-
ances) - which includes commands for device control (e.g., “Turn
up volume”), Planning (∼9K utterances) - consisting of utterances
relevant to planning calendar events (e.g., “Set an alarm at 6 p.m.”),
and Communication (∼8K utterances) with utterances relevant to
chat messaging, emails, or making phone calls. The Communica-
tion set, also includes some open-ended dictation corresponding to
the message (e.g. “Text Jacob, I’m running 10 minutes late, can we
reschedule?”).

All results in this section are evaluated using the quantized
LSTM CI CTC acoustic model described in Section 3, thus allowing
us to focus on the impact of the LM.

In order to build a single LM to use across both dictation and
command domains, we explore different interpolation techniques.

LM Setup Dictation WER Commands WER
Linear Interpolation 12.9 10.0

Bayesian Interpolation 12.3 8.9
Bayesian + Rescoring 13.5 9.0

Table 2. Word Error Rates (%) on an open-ended dictation domain
and the commands domain.
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A : ε

@` : ε

[b] : ε

p : top

[b] : ε

s : terse

[b] : ε

[b] : ε

Fig. 1. Example of a part of a decoder graph with blank labels [b].

As our baseline, we consider a linearly interpolated LM with inter-
polation weights estimated over a separate held-out development set
sampled from speech logs. We compare performance obtained from
the baseline system to a Bayesian interpolated LM [23], where voice
commands and dictation are each represented as a unique task and
the corresponding task priors are determined by sweeping param-
eters on a held-out development set to minimize word error rates
rather than setting these based on the log counts.

Our results are presented in Table 2. The first two rows of the
table highlight the utility of Bayesian interpolation over linear in-
terpolation for both domains. The decoder graph used to produce
these results was constructed with a single large language model,
and therefore rescoring on-the-fly was not used. The third row of
Table 2 shows the effects of on-the-fly rescoring on WER. Whereas
the fully composed decoder graph is an unacceptable 29 MB, break-
ing them down into first-pass and on-the-fly rescoring models yields
a 8.3 MB decoder graph and a 6.8 MB rescoring LM (with LOUDS
compression [17]).

5. DECODER

In this section, we describe our decoder setup and a modification
thereof that takes advantage of CTC’s simple topology. In contrast
to a conventional 3-state HMM structure, each phoneme is repre-
sented by a single AM output state in combination with a generic
blank (or “non-perceiving”) state. An FST-based decoder graph for
the CTC model is created by the usual construction and compo-
sition of lexicon and LM transducers [24]. We do not require a
context-dependency transducer, since we use context-independent
phone models. Self-loop transitions are added to each state for the
blank label. An example is shown in Figure 1.

We use an FST-based decoder with optimizations for CTC mod-
els in terms of both computation time and memory usage. By ap-
plying the blank self-loop transitions in the decoder, we can avoid
adding them explicitly as arcs in the decoder graph. Furthermore,
the dynamic expansion of HMM state sequences used in our generic
FST-based decoder can be removed, which allows for a more com-
pact search space in memory and a simpler search hypothesis expan-
sion procedure.
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Communication WER Names WER RT50
No Contacts 13.7 70.3 0.14
2 Contacts 9.0 30.0 -
+ biasing - 12.8 -

50 Contacts 9.2 38.2 -
+ biasing - 17.7 0.17

Table 3. Impact of contact injection and biasing on WER and la-
tency.

6. PERSONALIZATION

Our final set of experiments highlight the advantages of integrating
personal information into the language model. These experiments
are aimed at determining the impact of incorporating device-specific
information (e.g., the user’s list of contact names) on the word error
rate for individual users. We experiment with two test sets related to
contact name recognition. The first is the 8K utterance Communica-
tion test set described in Section 4, containing contact names in the
context of messages, e.g., “Text Jacob, . . .”. The second set consists
of 1.2K utterances containing only contact names. This second set
is representative of the utterances that might follow a text-to-speech
(TTS) prompt such as: “Which Jacob?” or perhaps a more general
prompt such as “Who would you like to email?”. The number of
candidate contacts injected will depend on whether the TTS prompt
is requesting disambiguation or just any name from the contact list.
In either context, we can perform the additional step of using on-the-
fly rescoring as in [13] to bias the language model towards recogniz-
ing only these contact names.

Given the lexical limits of the language model described above,
it is unlikely that the recognizer will be able to handle the long tail
of contact names as is. This motivates the incorporation of dynamic
classes into our language model. In the general spirit of class-based
LMs, and following the work of Aleksic et. al. [12] we annotate our
training data with a special $CONTACTS symbol in place of con-
tact names and train a language model that includes this placeholder
token. At run-time we inject a small FST representing the user’s per-
sonal contacts into the decoder graph at these locations. It should be
noted that this is particularly simple in our system as our AM uses
context-independent phonemes.

In order to generate pronunciations for contacts we train a
LSTM-based grapheme-to-phoneme (G2P) model on human tran-
scribed word-pronunciation pairs. The G2P problem is treated as a
sequence transcription task as described in [25]. The LSTM-G2P
system consists of four LSTM layers with 64 cells in each layer, and
is trained to optimize the CTC objective function. The LSTM-G2P
performs better in terms of word accuracy compared to traditional
joint-sequence models represented as finite state transducers (FSTs)
(a detailed comparison can be found in [25]). More importantly,
the LSTM-G2P is considerably smaller in size compared to the FST
implementation, 500 KB vs. 70 MB, making it an ideal solution for
on-device pronunciation generation.

Table 3 summarizes our results on the two contact test sets. For
each utterance recognized, N contacts are injected into the decoder
graph. If the transcript does indeed contain a contact name, one of
these N is the correct contact. For the set containing only contact
names, we additionaly evaluate performance obtained using on-the-
fly biasing [13] towards contact names.

Unsurprisingly, adding in personal contact names has a signifi-
cant impact on WER, since many of the terms in these test sets are

Component Size
Acoustic Model 3.0 MB
Decoder Graph 8.3 MB
Rescoring LM 6.8 MB

G2P Model 497 KB
Text Normalizers 1.1 MB

Endpointer 22 KB
Personalization Components 2.5 KB

Total 20.3 MB

Table 4. Size of various components in the overall system architec-
ture.

out-of-vocabulary items. In contexts when a single contact name
is the expected user-response, these results indicate that biasing
recognition towards the unigram $CONTACTS can yield dramatic
improvements, especially if the set of candidate names can be whit-
tled down to just two, as is often the case when disambiguating
between contacts (“Do you mean John Smith or John Snow?”).
While in practice one can often precompute these graphs, we also
show here that median RT factors are not significantly affected even
when 50 pronunciations are compiled and injected on-the-fly in the
system.

7. SYSTEM FOOTPRINT

We present the sizes of the various components in our overall system
architecture in Table 4. Using a combination of SVD-based com-
pression and quantization, along with a compact first-pass decoding
strategy and on-the-fly rescoring with a larger LM, we can build a
system that is about 20.3 MB in size, without compromising accu-
racy or latency.

8. CONCLUSION

We presented our design of a compact large vocabulary speech
recognition system that can run efficiently on mobile devices, accu-
rately and with low latency. This is achieved by using a CTC-based
LSTM acoustic model which predicts context-independent phones
and is compressed to a tenth of its original size using a combination
of SVD-based compression [4, 5] and quantization.

In order to support the domains of both open-ended dictation
and voice commands in a single language model we use a form of
Bayesian interpolation. Language model personalization is achieved
through a combination of vocabulary injection and on-the-fly lan-
guage model biasing [12, 13].

For efficient decoding, we use a on-the-fly rescoring strategy
following [1] with additional optimizations for CTC models which
reduce computation and memory usage. The combination of these
techniques allows us to build a system which runs 7× faster than
real-time on a Nexus 5, with a total system footprint of 20.3 MB.
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Graves, Françoise Beaufays, and Johan Schalkwyk, “Learning
acoustic frame labeling for speech recognition with recurrent
neural networks,” in ICASSP, 2015, pp. 4280–4284.
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