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ABSTRACT

We propose sparse reconstruction techniques to improve the
quality and / or reduce the bit-rate of standard speech coders.
To that end, we assume signal sparsity in some transform do-
main and formulate the problem of reconstructing the origi-
nal signal in terms of constrained `1-norm minimization. We
use modern primal-dual methods in order to solve the result-
ing non-smooth convex optimization problem. Experiments
show that with the proposed sparse reconstruction method
the instrumentally predicted speech quality can be largely im-
proved.

Index Terms— Speech coding, quantization, compressed
sensing, optimization methods.

1. INTRODUCTION

Speech coding describes how analog speech signals can effi-
ciently be represented in the digital domain, for instance for
storage or transmission. The goal of research in speech cod-
ing is to find algorithms that give the best possible trade-off
between computational complexity for encoding and decod-
ing, the required data-rate, algorithmic latency, and speech
quality [1]. The field has traditionally been driven by appli-
cations in telecommunications. As such, the requirements
and capacity on the sender and receiver side—both being
telephones—were usually rather symmetric.

In recent years wireless acoustic sensor networks attract
increasing interests in the audio and acoustics communities.
The idea of wireless acoustic sensor networks is that many
cheap, small, and potentially battery driven acoustic sensors
are spread through a room or even a house of interest. In
contrast to traditional fixed microphone arrays the essential
benefit of a sensor network is that chances are higher that a
sensor/microphone is close to the source of interest such that
the source can be captured at a higher signal-to-noise ratio.
To process the many signals captured by the acoustic sensor
network, two possibilities exist. Either the processing can be
done in a distributed fashion [2], or the signals can be sent to
a central processor, called fusion center, where all processing
is done [3]. In this paper, we focus on the latter. In contrast to
traditional telecommunications, in such a scenario, the com-
putational resources between sender and receiver are quite un-

balanced. As the sender is small and possibly battery driven
its computational capacity is limited. On the other hand, the
receiving fusion center can be very powerful.

The goal of this paper is therefore to find a speech codec
that results in a low power demand on the sender side while
the computational complexity for decoding at the receiver can
be significantly higher. To ensure a low power demand at the
sender we need both a low computational complexity and also
a bit-rate that is as low as possible. The lowest complexity
for encoding at a low data-rate is possibly to simply quantize
the signal with a low word length, i.e. well below 8 Bit per
sample. To improve quality, A-law compression can be ap-
plied prior to quantization [1]. If such a low bit-rate signal is
reconstructed at the receiver by simple interpolation, the re-
sulting quality would of course be poor. Thus in this paper,
we propose to reconstruct the signal quantized at a low bit-
rate at the receiver by exploiting the sparsity of the signal in
some transform domain and the prior knowledge that the orig-
inal signal sample must lie within the respective quantization
interval. Our approach is conceptually related to the idea of
compressed sensing [4, 5]. There a signal that is sparse in
some transform domain shall be captured by a number of lin-
ear measurements that is much smaller than the ambient di-
mension of the signal. In our situation, acoustic signals shall
be captured and transmitted in real time and latency of the
method has to be taken into account. Hence, we will stick to
a simple Nyquist sampling, and the compression is not done
by a small number of measurements, but by coarse quantiza-
tion, i.e. a low complexity of each measurement. The similar-
ity between compressed sensing and our approach is, that the
inherent low complexity of the signal (i.e. sparsity in some
transform domain) shall be leveraged for a better signal recon-
struction. De-quantization in combination with compressed
sensing has also been treated in [6, 7] however with a differ-
ent approach and for different applications.

The paper is structured as follows. After defining the
quantization functions in Section 2, in Section 3 we describe
the reconstruction approach, and Section 4 reports numerical
results. Finally, Section 5 draws conclusions.
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Fig. 1: Example for a quantization function of the form (1).

2. QUANTIZATION FUNCTIONS

Let w ∈ N denote the word length, i.e. the number of bits
available for quantization, and α0, . . . , α2w−1 ∈ R be the
quantization levels such that

0 =: α0 < α1 < · · · < α2w−1−1 < α2w−1 := 1.

Then the intervals Il := [αl−1, αl) (l = 1, . . . , 2w−1) form
a partition of the interval [0, 1). Moreover, let 0 < ∆l for
l = 1, . . . , 2w−1 with ∆l 6= ∆l′ for l 6= l′. Finally, we define
I := (−1, 1)N and let sign+(x) be 1 for x ≥ 0 and −1 for
x < 0. For a sampled speech signal f ∈ IN , we consider
quantization functions Q : IN → IN of the form

Q(f)j := sign+(fj)∆l if |fj | ∈ Il (1)

where fj denotes the j-th component of f and Q(f)j denotes
the j-th component of the quantized signal. From the above
definition, it follows thatQ is odd in each component and that
it maps the interval I to 2w different quantization levels, cf.
Figure 1.

3. RECONSTRUCTION APPROACH

Suppose that a quantized speech signal Q(f) is given and we
seek to find a signal x that approximates the underlying true
signal f as well as possible. We aim to find the true signal
among all signals x that would give the same quantized sig-
nal as we observed, i.e. we restrict the search space to all
signals x such that Q(x) = Q(f). However, this search is
still hopeless without additional information since there are
still infinitely many possibilities to choose x.

The crucial assumption for our reconstruction approach is
that the sought after signal x is sparse in some known trans-
form domain, i.e. we have a transform matrix Ψ ∈ RN×N

and expect that there exists a sparse vector a ∈ RN that sat-
isfies x = Ψa.

Consequently, we search a sparse coefficient vector a that
satisfies Q(Ψa) = Q(f). As known from compressed sens-
ing [4, 5] this is achieved by `1-norm minimization, namely
by solving

min
a∈RN

‖a‖1 s.t. Q(Ψa) = Q(f). (2)

Now it turns out that the non-linear constraintQ(Ψa) = Q(f)
has a convex and even linear reformulation: From the defini-
tion ofQ it follows thatQ(Ψa)j = Q(f)j if and only if (Ψa)j
is in the respective quantization interval, i.e. Q(f)j = ±∆l if
and only if

(Ψa)j ∈ ±Il. (3)

3.1. Uniform Quantization

We consider the case where Q is a mid-rise uniform quanti-
zation function, i.e. the quantization intervals satisfy ∆l −
∆l−1 = ∆ in (1). Depending on the word length w, we set
∆ := 2−w+1 and have

Q(f)j = Q∆(f)j := sign+(fj) ∆
(⌊ |fj |

∆

⌋
+ 1

2

)
.

Notice that with ∆l := (l − 1
2 )∆ and Il := [(l − 1)∆, l∆)

this is exactly of the form (1). Hence, (3) simply becomes
|(Ψa)j − Q∆(f)j | ≤ ∆

2 . We conclude that in this particular
case (2) turns out to be

min
a∈RN

‖a‖1 s.t. ‖Ψa−Q∆(f)‖∞ ≤ ∆
2 . (4)

3.2. Non-Uniform Quantization

Let C : I → I be odd, continuous and strictly monoton-
ically increasing. We investigate non-uniform quantization
functions of the form Q(x) = Q∆(C(x)), wherein Q∆ is a
mid-rise uniform quantization function as introduced in Sec-
tion 3.1. Moreover, for ease of notation, we use C(f)j =
C(fj) in case f ∈ RN .

At first, it is not hard to see that Q(f)j = ±∆l if |fj | ∈
C−1(Il) (and equal to +∆l for fj ≥ 0 and −∆l for fj < 0),
i.e.

Q(f)j = sign+(fj)∆l if |fj | ∈ C−1(Il)

which shows that Q can be written according to (1). Analo-
gous to above, constraint (3) turns into

(Ψa)j ∈ [C−1(Q∆(f)j − ∆
2 ), C−1(Q∆(f)j + ∆

2 )].

Thus, writing α := C−1(Q∆(C(f)) − ∆
2 ) as well as β :=

C−1(Q∆(C(f)) + ∆
2 ), the adaption of (2) to non-uniform

quantization functions is

min
a∈RN

‖a‖1 s.t. α ≤ Ψa ≤ β. (5)

5941



1 ai+1 = proxτ‖·‖1(ai − τΨTyi)

2 ai+1 = 2ai+1 − ai

3 yi+1 = proxσI∗Ω(yi + σΨai+1)

Algorithm 1: Primal-dual iteration for (7) with prox
defined in (8).

In our subsequent numerical experiments, we use the well-
known A-law compression function C = CA. For some fixed
A ≥ 1, this is given by (e.g. [1])

CA(x) :=

{
sign(x) 1+ln(A|x|)

1+ln(A) if |x| ≥ 1
A

sign(x) A|x|
1+ln(A) else

.

The related inverse is given by

C−1
A (y) :=

{
sign(y) e

|y|(1+ln(A))−1

A if |y| ≥ 1
1+ln(A)

(1+ln(A))y
A else

.

3.3. Algorithmic Framework

Both (4) and (5) are non-smooth constrained convex opti-
mization problems. We reformulate the problems with indi-
cator functions: For any convex set Ω ⊆ RN , the related
indicator function IΩ : RN → R∞ is defined by

IΩ(x) :=

{
0 if x ∈ Ω

∞ else
.

Further defining Ω2 := {x ∈ RN : ‖x − Q∆(f)‖∞ ≤ ∆
2 }

and Ω3 := {x ∈ RN : α ≤ x ≤ β}, we can rewrite (4) and
(5) as

min
a∈RN

‖a‖1 + IΩ(Ψa) (6)

with Ω = Ω2 and Ω = Ω3, respectively. Using the convex
conjugate I∗Ω of IΩ [8], (6) can be rewritten as

min
a∈RN

max
y∈RN

‖a‖1 + 〈Ψa,y〉 − I∗Ω(y). (7)

The latter is a convex-concave saddle-point problem which
can be tackled by different optimization methods. In our ex-
periments, we use the primal-dual algorithm proposed in [9].
The algorithm relies on the so-called proximal operators [8]:
For a convex function F defined on RN , λ > 0 and x ∈ RN

it holds that

proxλF (x) := argmin
y∈RN

λF (y) + ‖x− y‖22/2. (8)

Given a primal iterate ai and a dual iterate yi, the (i + 1)-th
iteration of this algorithm applied to (7) consists of the three
steps displayed in Algorithm 1 and only needs the proximal
operators for F (a) = τ‖a‖1 and G(y) = σI∗Ω(y). The first
one is the so-called soft thresholding operator given by

proxτ‖·‖1(a)j = sign(aj) max(|aj | − τ, 0).

And the proximal operators proxσI∗Ω for Ω = Ω2,Ω3, respec-
tively are

proxσI∗Ω2

(y) = proxσ∆
2 ‖·‖1

(y − σQ∆(f))

and

proxσI∗Ω3

(y)j =


yj − σαj if yj < σαj

0 if yj ∈ σ[αj , βj ]

yj − σβj if yj > σβj

,

respectively. Algorithm 1 converges as soon as the step-sizes
τ, σ > 0 fulfill τσ‖Ψ‖2 < 1, see [9].

4. NUMERICAL EXPERIMENTS

In our experiments, we investigate the impact of Algorithm 1
on 720 sentences from the IEEE corpus provided in [10] con-
sisting of male speech and sampled at 16 kHz.

As a first step, we quantize a speech signal f using a uni-
form or non-uniform quantization function as described in
sections 3.1 and 3.2, respectively. Then the signal is split
into overlapping sub-signals f t whereupon we employ Algo-
rithm 1 adapted to the respective quantization function. Fi-
nally, overlapping parts of the sub-solutions xt are averaged
in order to obtain the reconstructed signal x.

Thereby, we assume that each sub-solution xt has a sparse
representation in terms of the discrete cosine basis, i.e. its
discrete cosine transform DCT(xt) = at is sparse. Conse-
quently, we have xt = IDCT(at) and use Ψ = IDCT in
Algorithm 1.

In order to split f , we fix the size n ≤ N of the sub-signals
as well as a shift length s ≤ n. Therewith, the t-th sub-signal
is given by

f t = (f(t−1)s+1, . . . , f(t−1)s+n).

Considering that necessarily (t − 1)s + n ≤ N , we obtain
sub-signals for t = 1, . . . , bN−ns c+ 1.

We employ the Perceptual Evaluation of Speech Quality
instrumental measure as provided by Loizou in [10] (PESQL)
to validate the speech quality of the reconstucted signals. In
case of a uniform quantization function, we compare the
PESQL value of x to the PESQL value of the quantized
signal Q∆(f). In case of an A-law quantization function, we
compare with the PESQL value of the standard reconstruction
C−1
A (Q∆(CA(f))).

Figure 2 displays average results over 720 male speech
signals from the IEEE speech database. We performed the
experiments outlined above using n = 1024, s = 256, word
lengths w = 2, . . . , 8 and a fixed number of 25 iterations in
Algorithm 1. In general, 25 iterations are not sufficient to
solve (4) and (5), respectively. Nevertheless, we observed
that 25 iterations are enough to obtain a remarkably higher
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Fig. 3: Time-domain snippets of 64 ms length (top) and spectrograms (bottom) of clean (left), quantized (middle) and recon-
structed (right) speech. The snippets are taken at time 0.2s. The sampling rate is 16 kHz and the word length for the quantized
speech (middle) w = 5 Bit.
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Fig. 2: Average PESQL values obtained in experiments with
720 speech signals from the IEEE corpus using n = 1024,
s = 256, word lengths w = 2, . . . , 8 and 25 iterations in Al-
gorithm 1, compared to average PESQL values of the associ-
ated standard reconstructions C−1

A (Q∆(CA(f))) and Q∆(f),
respectively.

PESQL value. Figure 3 shows time snippets as well as spec-
trograms of the results for the seventh signal from the 48th
list in the database (“We don’t get much money, but we have
fun.”) under the same algorithmic setting as described above.

Our implementation in MATLAB on an Intel R©CoreTMI7
with 1.90GHz and 3.7GB RAM with 25 iterations could re-
construct a signal in less computational time than the signal
length and hence, is amenable for real time performance. It
should also be noted that already ten iterations lead to a sig-

nificant improvement of the PESQL values while using 50
instead of 25 iterations only leads to a further minor improve-
ment.

Notice that these results are obtained for n = 1024 and
s = 256. A higher value of n increases the size of the sub-
signals and thus the computational time for a fixed number of
iterations. At the same time, a higher value of n can decrease
the number of sub-problems to be solved. As well, a higher
value of s tendencially decreases the number of sub-problems
but also the number of sub-signals that overlap each sample.

5. CONCLUSIONS

In wireless acoustic sensor networks the power available for
data encoding and transmission is often much lower than at
the fusion center, where the signals are decoded and pro-
cessed. Therefore, in this paper we proposed to encode a
speech signal by quantizing the time domain samples with
a low number of bits. While this coding scheme is computa-
tionally cheap, at low bit-rates traditional decoding schemes
would yield a rather poor quality. Instead, we propose to
exploit both the fact that speech signals are sparse in some
transform domain and that we know that the unknown true
speech sample lies within a given quantization interval. To
solve the respective non-smooth optimization problem we use
Chambolle-Pock’s primal-dual method. This method leads to
significant improvement of the PESQL and moreover, can be
implemented in real time. Our results show that even the ba-
sic setup with the DCT, a rectangular window and only 25
iterations leads to this significant improvement of the PESQL
value. Hence, further improvement is to be expected by fine-
tuning of these ingredients.
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