
NOISE SUPPRESSION METHOD FOR BODY-CONDUCTED SOFT SPEECH
ENHANCEMENT BASED ON EXTERNAL NOISE MONITORING

Yusuke Tajiri† Tomoki Toda‡ Satoshi Nakamura†

† Graduate School of Information Science, Nara Institute of Science and Technology, Japan
‡ Information Technology Center, Nagoya University, Japan

{tajiri.yusuke.tk0, s-nakamura}@is.naist.jp, tomoki@icts.nagoya-u.ac.jp

ABSTRACT

This paper presents a novel approach to suppressing adverse effects
of external noise on body-conducted soft speech for silent speech
communication in noisy environments. Nonaudible murmur (NAM)
microphone as one of the body-conductive microphones is capa-
ble of detecting very soft speech. However, body-conducted soft
speech easily suffers from external noise owing to its faint volume.
To address this issue, the proposed method additionally uses an air-
conductive microphone to detect only an external noise signal and
uses the detected external noise signal to suppress its effect on the
body-conducted soft speech. A semi-blind source separation tech-
nique is applied to the proposed method for estimating a linear filter
to suppress the noise components without voice activity detection.
Experimental results demonstrate that the proposed method yields 10
dB SNR improvements in 80 dBA noisy conditions and also yields
significant improvements in sound quality of body-conducted soft
speech.

Index Terms— silent speech communication, nonaudible mur-
mur microphone, noise suppression, external noise monitoring,
semi-blind source separation

1. INTRODUCTION

Speech communication plays a principal role in our daily life as the
most efficient human communication method. In recent decades,
thanks to mobile phone or other devices, we have come to be able
to talk with each other beyond limitations of distance and location.
However, there still exist some situations where we hesitate to talk
with others using those devices; e.g., we have difficulty in talk-
ing about private information in a crowd; and speaking itself would
sometimes annoy others in quiet environments such as in a library.

Recently, silent speech interfaces [1] have attracted attention as
a technology to achieve a new style of speech communication. They
enable us to talk with each other without the necessity of emitting an
audible acoustic signal. To detect silent speech, several sensing de-
vices have been explored as alternatives to a usual air-conductive mi-
crophone, such as body-conductive microphones [2, 3], electromyo-
graphy [4], ultrasound imaging [5], and so on.

We especially focus on nonaudible murmur (NAM) microphone
[3] as one of the body-conductive microphones capable of detecting
silent speech. It has been originally developed to detect an extremely
soft whispered voice called NAM, which is so quiet that people
around the speaker barely hear its emitted sound. Figure 1 shows a
structure of the NAM microphone and its setting position. The NAM
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Fig. 1. Setting position and structure of NAM microphone.

microphone is capable of detecting various types of speech, such as
NAM, a whispered voice, a soft voice, and normal speech, from this
setting position through only the soft tissues of the head. It is also
more robust against external noise owing to its noise-proof struc-
ture compared to the usual air-conductive microphone. Although
severe degradation of speech quality is caused by essential mecha-
nisms of body conduction [6], the body-conducted speech detected
with the NAM microphone still has a great potential to be used as a
communication medium if people get used to hear its special sound
quality. Moreover, there are several attempts to directly address this
quality-degradation issue by developing body-conducted speech en-
hancement techniques to convert it into air-conducted speech using
a statistical voice conversion technique [7, 8].

There still remain some issues to be addressed in order to make
it possible to practically use the body-conducted soft speech de-
tected with the NAM microphone for silent speech communication.
Although the previous work uses the body-conducted soft speech
recorded in a sound-proof room [7], external noise usually exists
in real environments. Even though the NAM microphone is robust
against external noise, it cannot completely block external noise sig-
nals. Therefore, their effect on the body-conducted speech signal is
not ignored. In particular, when detecting soft speech like NAM or a
whispered voice, its body conducted speech signal significantly suf-
fers from external noise because power of soft speech is too small.

To address this issue, several enhancement methods addition-
ally using the air-conducted noisy speech signal detected with the
usual air-conductive microphone have been proposed. For exam-
ple, the direct filtering method [9] and the statistical enhancement
method [10] have been proposed although these methods actually
deal with speech enhancement with a bone-conductive microphone
under heavy noisy conditions. Inspired by these methods, a body-
conducted soft speech enhancement method additionally using air-
conducted soft speech detected under noisy conditions has been pro-
posed and its effectiveness has been reported in [11]. On the other
hand, it has also been reported that adaptation of the statistical en-
hancement model to each external noise condition is essential. How-
ever, it is not straightforward to accurately adapt the model to arbi-

5935978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Fig. 2. Setting position of body- and air-conductive microphones.

trary noisy conditions, and consequently model adaptation perfor-
mance is usually limited. Therefore, it is worthwhile to develop a
front-end noise suppression technique robust against any external
noisy conditions for reducing the external noise components as much
as possible.

In this paper, we propose a noise suppression method for the
body-conducted soft speech based on external noise monitoring us-
ing the air-conductive microphone. Because power of emitted soft
speech such as NAM is too small, it is possible to detect only an
external noise signal by setting the air-conductive microphone to a
place not close to the speaker’s mouth, e.g., a place just close to
the setting position of the NAM microphone. The proposed method
effectively uses the air-conducted external noise signal to suppress
its components detected with the NAM microphone, which is called
the body-conducted external noise signal in this paper. A semi-blind
source separation technique [12] is used to estimate a linear filter
to suppress the body-conducted external noise signals without voice
activity detection. Several experimental evaluations are conducted,
demonstrating that the proposed method is capable of significantly
suppressing the body-conducted external noise signals to enhance
the body conducted soft speech and the semi-blind source separation
technique is more effective compared to other alternative techniques.

2. EXTERNAL NOISE MONITORING USING
AIR-CONDUCTIVE MIROPHONE

NAM is an extremely soft whispered voice and it is relatively dif-
ficult to be detected with the usual air-conductive microphone in
particular under noisy conditions because of its faint volume. Con-
sidering this property of NAM, the proposed method uses the air-
conductive microphone to detect only the external noise signal, and
then uses the detected signal to suppress the body-conducted exter-
nal noise signal. It is expected that a proper setting position of the
air-conductive microphone will be 1) far away from the speaker’s
mouth in order to reduce components of the emitted NAM signal de-
tected with the air-conductive microphone as much as possible and
2) close to the setting position of the NAM microphone in order to
detect the air-conducted external noise signal of which acoustic char-
acteristics are similar to those of the body-conducted external noise
signal detected with the NAM microphone. Thus in this paper we
set the air-conductive microphone as shown in Fig. 2.

As a preliminary experiment, we recorded some types of exter-
nal noise signals with the NAM microphone and the air-conductive
microphone, and also separately recorded the NAM signal with both
microphones. Then, the signal-to-noise ratio (SNR) of the NAM sig-
nal detected with each microphone was calculated. Table 1 shows
results. We can see that SNR of the body-conducted NAM is much
higher than that of the air-conducted NAM thanks to the noise-proof
structure of the NAM microphone but it starts to significantly de-
crease when the sound pressure level of external noise is higher than

Table 1. SNR of NAM detected with each of air- and body-
conductive microphones under several noisy conditions

Noise SNR (air) [dB] SNR (body) [dB]
office 50 dBA -12.7 12.7
crowd 60 dBA -17.1 10.1
booth 70 dBA -27.4 5.5
station 80 dBA -36.9 -2.8

60 dBA. Namely, it is expected that the noise suppression process is
not necessary up to 60 dBA of the sound pressure level of external
noise but it is essential under more than 60 dBA noisy conditions.
We can also see that the SNR of the air-conducted NAM signal is
very low under more than 60 dBA noisy conditions (i.e., booth 70
dBA and station 80 dBA). Therefore, in such noisy conditions, the
signal detected with the air-conductive microphone will be well ap-
proximated by only the external noise signals without including the
emitted NAM signal. Please note that this preliminary experiment
ignores the Lombard reflex [13] that is also observed in NAM [14];
i.e., as the external noise level is higher, power of the emitted NAM
is usually larger. Therefore, actual SNR is expected to be higher
than shown in Table 1 in particular under 70 dBA and 80 dBA noisy
conditions.

Considering these results, we assume the following mixing pro-
cess in the proposed method:

x1(t) = s1(t) + a(t) ∗ s2(t) (1)
x2(t) ≈ s2(t) (2)

where x1(t) is an observed signal detected with the NAM micro-
phone, x2(t) is an observed signal detected with the air-conductive
microphone, s1(t) is a clean body-conducted NAM signal, s2(t) is
an air-conducted external noise signal, and a(t) is a transfer function
to compensate acoustic differences between the external noise signal
detected with the air-conductive microphone and that detected with
the body-conductive microphone. In the proposed noise suppression
method, the clean body-conducted NAM signal s1(t) is extracted
from the observed signals x1(t) and x2(t) by estimating the transfer
function a(t). This problem is equivalent to a classical acoustic echo
cancellation (AEC) problem [15], i.e., the observed signal x2(t) is
regarded as a reference signal and the transfer function a(t) is re-
garded as an echo path. Therefore, typical AEC methods such as the
Least Mean Square (LMS) algorithm [16] and the Recursive Least
Squares (RLS) algorithm [16] can be used in the proposed method.

3. NOISE SUPPRESSION METHOD BASED ON
SEMI-BLIND SOURCE SEPARATION

The typical AEC methods are originally designed to cancel only far-
end echo, and they don’t work well when both the far-end and near-
end speakers utter simultaneously. This situation is well known as
double-talk. Therefore, double-talk detection is usually needed to re-
move the corresponding data segments including near-end speaker’s
voices from the observation data used for estimating the echo path.
The same problem occurs in the proposed method, i.e., the situation
where NAM is uttered is regarded as double-talk. Therefore, it is
necessary to perform voice activity detection (VAD) of NAM and
to remove the detected voice activity segments from the observation
data to estimate the transfer function a(t).

In this paper, we apply a semi-blind source separation (semi-
BSS) technique to the proposed method in order to achieve double-
talk free noise suppression. Let us assume an observed signal vector
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x(ω, τ) = [x1(ω, τ), x2(ω, τ)]
⊤ consisting of the observed signals

and a source signal vector s(ω, τ) = [s1(ω, τ), s2(ω, τ)]
⊤ consist-

ing of the clean body-conducted NAM signal s1(ω, τ) and the air-
conducted external noise signal s2(ω, τ), where ω is frequency bin
index, τ is time frame index, and ⊤ is vector transpose. Because the
observed signals are modeled as convolutive mixtures in the time
domain as shown in Eqs. (1) and (2), the observed signal vector
x(ω, τ) is modeled as instantaneous mixture in the frequency do-
main as follows:

x(ω, τ) = A(ω)s(ω, τ) (3)

where A(ω) is a (2 × 2) mixing matrix, which is assumed to be
time-invariant in this paper. BSS is a technique to automatically
find a (2× 2) un-mixing matrix W (ω) that can separate the source
signals from the observation signals as follows:

y(ω, τ) = W (ω)x(ω, τ) (4)

where y(ω, τ) = [y1(ω, τ), y2(ω, τ)]
⊤ is the separated signal vec-

tor. Independent component analysis (ICA) [17] is often used to
estimate the un-mixing matrix. In the proposed method, one of the
two source signals (i.e., s2(ω, τ)) is known by the external noise
monitoring as shown in Eq. (2). Therefore, we can formulate the
proposed method using semi-BSS rather than BSS. Some elements
of the un-mixing matrix W can be explicitly given as follows:

W (ω) =

[
w11(ω) w12(ω)

0 1

]
. (5)

Therefore, it is necessary to estimate only a part of the un-mixing
matrix, an un-mixing vector w = [w11(ω), w12(ω)]. In this paper,
we use ICA based on natural gradient [18] to estimate the un-mixing
vector. The un-mixing vector is iteratively updated as follows:

∆w = η{w(ω)− ⟨φ(y1(ω, τ))y(ω, τ)H⟩τW (ω)} (6)
w(ω) ← w(ω) + ∆w (7)

where H is Hermitian transpose, η is a step-size parameter, ⟨·⟩τ is a
time average operator, and φ(y1(ω, τ)) is a nonlinear function like
a polar function given by

φ(y1(ω, τ)) = tanh(|y1(ω, τ)|) exp(jarg(y1(ω, τ))). (8)

To handle scaling indeterminacy in ICA, a projection back method
[19] is also applied. Consequently, the estimated clean body-
conducted NAM signal is given by

y1(ω, τ) = x1(ω, τ) +
w12(ω)

w11(ω)
x2(ω, τ). (9)

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental conditions

We simultaneously recorded clean body- and air-conducted NAM
signals with the NAM microphone and the air-conductive micro-
phone, respectively in a sound-proof room. The setting position
of these microphones was the same as shown in Fig. 2. We also
recorded body- and air-conducted signals of the following 3 kinds of
noise using the same microphone settings by presenting them from
a loud speaker in the sound-proof room.

• crowd60dB: 60 dBA crowd noise

• booth70dB: 70 dBA booth noise

• station80dB: 80 dBA station noise

The sound pressure levels of the individual noises were measured
by a sound level meter placed at around the speaker’s head. The
noise signals recorded with the NAM microphone and the air-
conductive microphone were superimposed on the clean body- and
air-conducted NAM signals. The resulting signals were effectively
used in objective evaluations because some distortion measures
between the processed body-conducted NAM signal and the clean
body-conducted NAM signal could be calculated as evaluation met-
rics. On the other hand, the Lombard reflex was ignored in these
simulated signals as mentioned in Section 2. Therefore, we also
recorded the noisy NAM signals with both the NAM microphone
and the air-conductive microphone while presenting the noise sig-
nals. The recorded signals more accurately simulated the noisy
NAM signals detected in real conditions including the Lombard re-
flex although the distortion measures could no longer be calculated.
Therefore, they were used in a subjective evaluation.

Fifty sentences in a phoneme balanced sentence set were uttered
in NAM. The sampling frequency was set to 16 kHz. The window
length of STFT was set to 64 ms and the shift length was set to 32
ms. For the semi-BSS, the step-size parameter η was set to 0.01. The
number of iterations was varied from 5 to 200.

To investigate the effectiveness of the proposed method using
noise suppression based on the external noise monitoring, the fol-
lowing 7 methods were evaluated.

• unprocessed: no noise suppression
• upper bound: upper bound of time-invariant linear filter in

the proposed method
• LS w/ VAD: least squares (LS) with ideal VAD in the pro-

posed method
• NLMS w/ VAD: AEC based on the normalized LMS [20]

with ideal VAD in the proposed method
• APA w/ VAD: AEC based on the affine projection algorithm

(APA) [21] with ideal VAD in the proposed method
• RLS w/ VAD: AEC based on the RLS with ideal VAD in the

proposed method
• semi-BSS: the semi-BSS with no VAD in the proposed

method

In upper bound, we used the transfer function estimated by the LS
algorithm using the recorded noise signals detected with the NAM
microphone and the air-conductive microphone before their super-
imposition on the clean NAM signals. In LS w/ VAD and the AEC
algorithms (i.e., NLMS w/ VAD, APA w/ VAD, and RLS w/ VAD),
we performed double-talk detection based on ideal VAD results,
which were determined by applying VAD to a clean air-conducted
NAM signal with high SNR recorded with another air-conductive
microphone set to a place just close to the speaker’s mouth. LS w/
VAD uses the batch-type filter estimation process while the AEC
algorithms use the adaptive filter estimation process. On the other
hand, in semi-BSS, the filter estimation process was performed in
completely unsupervised manner without VAD.

4.2. Objective evaluations

Noise suppression performance was evaluated using SNR and mel-
cepstral distortion (MCD) calculated using the 1st through 24th mel-
cepstral coefficients between the estimated body-conducted NAM
signals and the clean body-conducted NAM signals.

First, we evaluated the SNR improvements yielded by semi-
BSS. We also investigated whether or not the assumption used in
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Table 2. Parameter settings for individual AEC algorihtnms
NLMS

Filter length: 64 ms
Step size: 0.01(60dBA), 0.05(70dBA), 0.5(80dBA)

APA
Filter length: 64 ms
Step size: 0.01(60dBA), 0.05(70dBA), 0.25(80dBA)
Number of constrains: 2

RLS
Filter length: 16 ms
Forgetting factor: 0.999(80dBA), 1(60dBA, 70dBA)
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Fig. 3. Improvement in SNR yielded by semi-BSS-based noise sup-
pression.

the proposed method (shown in Eq. (2)) holds. Figure 3 shows
the improvement in SNR yielded by semi-BSS. SNR is significantly
improved even after only five iterations compared to unprocessed.
More iterations make SNR improvements close to that by upper
bound. Moreover, in Fig. 3, ideal data indicates results of using
the air-conducted signals including only external noise signals with
no superimposition (i.e., simulated data when x2(t) is completely
equivalent to s2(t) in Eq. (2)). We can see that there is almost no
difference between semi-BSS and semi-BSS w/ ideal data. This re-
veals that the assumption in Eq. (2) actually holds in the proposed
external noise monitoring method.

Then, we evaluated performance of individual noise suppression
algorithms. The number of iterations in semi-BSS was set to 200.
For the individual AEC algorithms, their parameters were optimized
(except for the number of constrains in APA) so that SNR was max-
imized. The optimized parameter settings are shown in Table 2.
Figures 4 and 5 show SNR and MCD of the body-conducted NAM
signals estimated by each method, respectively. We can see that SNR
and MCD are significantly improved by the proposed method using
any noise suppression algorithm. Especially, semi-BSS yields sig-
nificantly large improvements in both SNR and MCD under 80 dBA
noisy conditions even though no VAD is needed.

4.3. Subjective evaluation

We conducted an opinion test on sound quality using a 5-point opin-
ion scale, such as 1: very bad, 2: bad, 3: fair, 4: good, and 5:
excellent. We evaluated the clean body-conducted NAM signals,
the unprocessed noisy body-conducted NAM signals, and the body-
conducted NAM signals estimated by semi-BSS. The number of lis-
teners was 10. Each listener evaluated 18 samples for each method.

Figure 6 shows the result. The sound quality of estimated body-
conducted NAM signals is significantly improved by the proposed
method under 70 dBA both and 80 dBA station noisy conditions. It
is interesting that the result under 70 dBA noisy condition is sim-
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ilar to that under 80 dBA noisy condition. This is because several
acoustic changes are caused by the effect of Lombard reflex and the
NAM signal itself tends to be more intelligible as the external noise
level increases. Therefore, the Lombard reflex doesn’t cause any ad-
verse effects in the proposed method and it is actually helpful for
improving quality of the estimated NAM signal.

5. CONCLUSIONS

This paper has presented a noise suppression method for the body-
conducted soft speech based on external noise monitoring using the
air-conductive microphone. We have shown that only an external
noise signal can be detected with the air-conductive microphone by
setting it to a place far away from the speaker’s mouth and the de-
tected signal can be effectively used to estimate a linear filter to sup-
press the external noise components observed in the body-conducted
signals. We have also applied a semi-blind source separation tech-
nique to the proposed method to make it possible to estimate the
linear filter without voice activity detection. Experimental results
have demonstrated that the proposed method yields significant im-
provements in both estimation accuracy and sound quality of body-
conducted soft speech.

5

4

3

2

1M
ea

n 
op

in
io

n 
sc

or
e 

(M
O

S)

clean
unprocessedsemi-BSS

booth70dB station80dB
unprocessed semi-BSS

Confidence interval (95%)

Fig. 6. Result of subjective evaluation on speech quality of body-
conducted NAM.
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