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ABSTRACT

In this paper, we present a conditional restricted Boltzmann
machine (CRBM) based speech bandwidth extension (BWE)
method. A CRBM is employed to obtain time information
and model deep non-linear relationships between the spec-
tral envelope features of low frequency (LF) and high fre-
quency (HF). Two exclusive CRBMs are adopted to model
the distribution of LF’s and HF’s spectral envelope features.
respectively. A neural network (NN) is then used to model
the joint distribution of hidden variables extracted from the
two CRBMs. The proposed method takes advantage of the
strong ability of CRBM in discovering the temporal correla-
tion between adjacent frames and modeling deep non-linear
relationships between input and output. Both the objective
and subjective evaluations indicate that our proposed method
outperforms the conventional Gaussian mixture model based
methods and other NN based methods.

Index Terms— Speech bandwidth expansion, conditional
restricted Boltzmann machine, Gaussian mixture model

1. INTRODUCTION

Speech bandwidth expansion (BWE) is a technique that re-
generates the missing high frequency parts in order to im-
prove the quality of speech. Many approaches have been pro-
posed for BWE during the last decades. Among these ap-
proaches, mapping method based on Gaussian Mixture Mod-
el (GMM) [1] is widely used and a number of improvements
[2, 3, 4, 5] have been proposed.

However, the derived mapping function by GMM is a
piece-wise linear transformation which is maybe insufficient
to describe the complex non-linear relationship between the
low frequency (LF) and high frequency (HF). To capture the
characteristics of speech more precisely, a deeper non-linear
architecture is required. One example of deeper BWE meth-
ods was imposed by [6] based on deep neural network (DNN).
Previously, we also proposed to use the restricted Boltzmann
machines (RBM) [7] to obtain a non-linear relationship be-
tween LF and HF. Although these approaches were reported
to outperform the GMM-based approaches, they assumed the

speech frames were independent of each other, ignoring the
temporal information of speech. The importance of the tem-
poral information as well as its advantage had been investigat-
ed appropriately in several literatures. In [8, 9, 10], temporal
information was included in GMM-based method by utiliz-
ing the delta features of spectral envelopes. In [11], time cor-
relation properties of speech were embedded into spectrum
estimation by utilizing the Hidden Markov Model (HMM).

In this paper, we propose to use conditional restricted
Boltzmann machine (CRBM) for spectral envelope model-
ing to avoid the frame-by-frame independence assumption in
most of the speech BWE methods. We do this by combining
two CRBMs and a concatenation neural network (NN). A
CRBM is a non-linear probabilistic model used to capture
temporal information of speech and obtain high-order feature
space where speech features are converted more easily than
in an original acoustic feature space. In our approach, we
first train two exclusive CRBMs for the LF and HF, aiming to
capture high-order features in an unsupervised manner. Then
we train a NN using the projected features produced by two
CRBMs. The important advantage of our proposed method
is its ability to capture the temporal correlation between
adjacent frames of speech and obtain the deep non-linear re-
lationships between the spectral envelope features of LF and
HF.

2. SPEECH BANDWIDTH EXTENSION BASED ON
GMM

Let xt = [x1, x2, · · · , xm]
T and yt = [y1, y2, · · · , yn]

T be
the m dimensional LF and n dimensional HF feature vec-
tors at frame t, respectively. The operator [·]T denotes matrix
transposition. In GMM based method, the joint probability
density function of the joint feature space zt =

[
xT
t ,y

T
t

]T
is

modeled by a GMM

f (zt|Θz) =

L∑
l=1

azlN (zt;µ
z
l ;Σz

l ) ,

L∑
l=1

azl = 1 (1)

where N (·) denotes a Gaussian distribution of joint vector
zt. Θz denotes a parameter set of the GMM, which consists
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of weights, mean vectors and the covariance matrices for in-
dividual mixture components. The total number of mixture
components is L. azl , µz

l and Σz
l are the weight, mean vector

and covariance matrix of the lth mixture component, and

µz
l =

[
µx

l

µy
l

]
Σz

l =

[
Σxx

l Σxy
l

Σyx
l Σyy

l

]
(2)

µx
l and µy

l are the mean vectors of the lth component for the
LF and HF respectively, Σxx

l and Σyy
l are the corresponding

covariance matrices, Σxy
l and Σyx

l are the cross-covariance
matrices. The GMM is trained with the expectation maxi-
mization (EM) algorithm using the joint vectors as the input
feature vectors.

The idea of BWE is to determine a mapping function that
can approximate HF features accurately. A mapping function
to convert the LF feature vector xt to the HF feature vec-
tor yt is derived based on the conditional probability density
of the HF feature vector, given the LF feature vector. When
minimizing the mean square error (MMSE) estimation rule is
adopted for parameter generation, the mapping function takes
the form:

ỹt =

∫
Ωy

ytfy|x (yt|xt)

=

L∑
l=1

pl (x)
[
µy

l + Σyx
l (Σxx

l )
−1

(xt − µx
l )
]
,

(3)

where pl (x) is the probability of xt belonging to the lth com-
ponent, i.e

pl (x) =
alN (xt,µ

x
l ,Σ

xx
l )∑L

m=1 amN (xt,µx
m,Σ

xx
m )

. (4)

According to Eq.3, the mapping function is a piece-wise lin-
ear transformation. The converted HF feature vector ỹt is de-
termined by the current acoustic vector from LF, which means
that the GMM based method ignores the time information.

3. PROPOSED SPEECH BANDWIDTH EXTENSION

Our speech bandwidth extension system uses CRBM to cap-
ture high-order features and time-related information. We
briefly discuss the main idea of CRBM as well as its param-
eters estimation and give details of our proposed method in
this section.

3.1. CRBM

CRBM is the conditional form of RBM proposed by Taylor
et al [12]. In this model, short-term temporal structures can
be captured by making the visible and hidden units receive
additional input from past and future states of visible units
dynamically. Given a hidden vector ht = [ht1, h

t
2, · · ·htJ ]

T,
htj ∈ {0, 1} a visible vector vt = [vt1, v

t
2, · · · vtI ]

T, vti ∈

{0, 1} and a conditional vector vt−r( r is the number of pre-
vious frames from the current frame taken in account, here
we choose r = 1 for simplicity) at the current frame t, the
conditional probability could be defined as follows:

p(vt | vt−1) =
1

Z

∑
ht

exp(−E(vt,ht | vt−1)) (5)

E(vt,ht | vt−1) = −bTvt − cTht − (vt)TW vtht

ht

− (vt−1)TW vt−1vt

vt

− (vt−1)TW vt−1ht

ht

(6)

Z =
∑
vt,ht

exp(−E(vt,ht | vt−1)) (7)

where b and c are a bias vector of visible units and a bias
vector of hidden units respectively. W vtht

,W vt−1vt

and
W vt−1vt

are the weight matrices between vt and ht, vt−1

and vt, vt−1 and ht respectively.
In this model, there are five parameters to be estimated:

b, c,W vt−1ht

,W vtht

,W vt−1vt

. These parameters are esti-
mated by maximizing the log-likelihoodL = log

∏
t p
(
vt | vt−1

)
.

Differentiating partially with respect to each parameter, we
obtain

∂L
∂W vtht

ij

=
〈
vtih

t
j

〉
data
−
〈
vtih

t
j

〉
model

(8)

∂L
∂W vt−1vt

i′i

=
〈
vtiv

t−1
i′
〉
data
−
〈
vtiv

t−1
i′
〉
model

(9)

∂L
∂W vt−1ht

i′j

=
〈
vt−1
i′ ht

j

〉
data
−
〈
vt−1
i′ ht

j

〉
model

(10)

∂L
∂bi

=
〈
vti
〉
data
−
〈
vti
〉
model

(11)

∂L
∂cj

=
〈
ht
j

〉
data
−
〈
ht
j

〉
model

(12)

where 〈·〉data and 〈·〉model indicate the expectations of the in-
put data and the inner model. Because 〈·〉model is extremely
expensive to compute exactly, the contrastive divergence ap-
proximation to the gradient is used, where 〈·〉model is replaced
by running the Gibbs sampler initialized at the data for one
full step [13].

Once the parameters are estimated, the conditional proba-
bility of ht given vt and vt−1 and the conditional probability
of vt given ht and vt−1 are respectively written as:

p
(
ht

j = 1 | vt,vt−1) = σ
(
cj + (vt)TW vtht

:j + (vt−1)TW vt−1ht

:j

)
(13)

p
(
vt
i = 1 | ht,vt−1) = σ

(
bi + (ht)T(W vtht

i: )T + (vt−1)TW vt−1vt

:j

)
(14)

where Wi: and W:j denote the column vector and the row
vector inW respectively, and σ indicates a sigmoid function;
i.e. σ (x) = 1

1+ex .
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Fig. 1. (a) CRBMs for the low frequency (below) and high fre-
quency (above) (b)our proposed speech bandwidth extension
architecture combining two CRBMs and a NN

3.2. Speech bandwidth extension using CRBM

Figure 1 shows an overview of our proposed speech BWE
system. In our approach, two CRBMs (one for the low fre-
quency and the other for the high frequency) are adopted to
describe the distribution of xt, xt−1 and yt, yt−1 respective-
ly. xt and xt−1 are spectral envelop features of the LF at
frame t and t − 1 respectively. yt and yt−1 are spectral en-
velope features of the HF at frame t and t − 1 respectively.
Then a NN is employed to model the joint distribution of ht

x

and ht
y . ht

x and ht
y are the hidden variables extracted from

two CRBMs respectively. The extracted hidden variables can
be considered as the high-order binary representation of the
raw spectral envelopes. Therefore, the parameter set of our
proposed method is given by

Θ = {θx,θy,θn} (15)

where θx =
{
W xtxt−1

,W xt−1ht

,W xtht

, bx, cx
}

are the pa-
rameters of the CRBM using the training spectral envelopes
of LF, θy =

{
W ytyt−1

,W yt−1ht

,W ytht

, by, cy
}

are the pa-
rameter of the CRBM using the training spectral envelopes
of HF, θn =

{
W 1, · · · ,WL,d1, · · · ,dL

}
(L − 1 = {0, 1, 2}

is the number of the hidden layers, dl is the bias vector of
the lth layer, W l is the weight matrix from the (l − 1)th

layer to the lth layer) are the parameters of the NN trained
using the extracted hidden variables. The weight matri-
ces W xtxt−1

,W xt−1ht

,W ytyt−1

,W yt−1ht

can absorb time-
related information.

At the training phase of the NN, the input vectors and the
output vectors are written as

ht
x = σ

(
cx +W xtht

xt +W xt−1ht

xt−1
)

(16)

ht
y = σ

(
cy +W ytht

yt +W yt−1ht

yt−1
)

(17)

Weight parameters θn of NN are estimated by minimizing the
error between the output h̃

t

y of NN and the target vector ht
y .

Once the parameters of NN are obtained, the input vector ht
x

can be converted to:

h̃
t

y = ol = σ
(
sl
)
, l ≥ 1 (18)

where sl = W lol−1 + dl and ol−1 = σ
(
sl−1

)
,o0 = ht

x.
To map the output of the NN to the spectral envelope fea-

tures of the HF, we can use backward inference of CRBM
using Eq.14,

p
(
yt | h̃

t

y,y
t−1
)

= σ
(
by + (W ytht

)Th̃
t

y +W yt−1yt

yt−1
)

(19)
According to Eq.18 and Eq.19, the mapping function of

our method from a LF’s spectral envelope feature vector xt

to a HF’s spectral envelope feature vector yt at frame t, given
the previous feature vectors xt−1 and yt−1 is given as:

yt = σ
(
by + (W ytht

)Tσ
(
sl
)

+W yt−1yt

yt−1
)

(20)

As Eq.20 indicates, the mapping function is a composite func-
tion of multiple different non-linear functions. We need a cur-
rent acoustic vector from LF, and previous vectors from both
LF and HF to reconstruct the HF’s current acoustic vector.
Thus, additional information from adjacent signal frames can
be captured and deep non-linear relationships between spec-
tral envelope features of LF and HF can be discovered by our
proposed method.

4. EXPERIMENTS

4.1. setup

We conducted speech bandwidth extension experiments using
two Chinese speech databases, comparing our method (CRB-
M) with the traditional GMM-based method (GMM) and our
previous work (RBM). The first Chinese speech database is
from the NTT Advanced Technology Corporation (NTT-AT).
The second database is from Ericsson and Beijing Institute
of Technology (EBIT). The data in the two databases is sam-
pled at a 16-kHz sampling rate with 16-bits resolution. Each
utterance in the two databases lasts 8s. A high-pass filtering
supplied the high frequency signal. The low frequency signal
resulted from a 0.3 to 3.4 kHz band-pass filtering followed
by a down-sampling and up-sampling with a factor 2. We
used 64 utterances randomly selected from all speech sound
classes in NTT and 64 utterances in EBIT as our training set.
The test set consisted of the 32 utterances in NTT and the 32
utterances in EBIT that were not included in the training data.

A GMM with 128 components was trained for the base-
line system. The 16-order and 10-order line spectral frequen-
cies (LSFs) [14] were adopted as the spectral envelope fea-
tures for the LF and HF respectively. LSFs are first normal-
ized to have zero mean and unit variance, and then convert-
ed to binary using a sigmoid function before feeding them

5932



into CRBMs. The frame size and the frame shift for calcu-
lating spectral envelopes was set to 20ms and 10ms respec-
tively. We investigated on three neural network architectures
(arc.1: no hidden layer, arc.2: 1 hidden layer and 128 hid-
den units in the hidden layer, arc.3: 2 hidden layers and 128
hidden units in each hidden layer) for the following experi-
ments. For each architecture, the contrastive divergence (CD)
learning with 10-step Gibbs sampling was employed to train
two CRBMs. The stochastic batch gradient descent algorithm
was adopted to update the model parameters. The size of each
mini-batch was set to 64. The learning rate and momentum
were set to 0.0001 and 0.9. The number of epochs of CRBMs
and NNs were set to 500 and 300 respectively. The number
of hidden units of two CRBMs was fixed to 64. We used the
LF excitation signal as HF excitation signal. In order to adjust
the power of the extended HF excitation signal, we builded a
one-to-one codebook from the LSFs of LF to gains between
the HF signal and the synthesized signal that the LF excitation
signal filtered through the high frequency synthesis filter.

To assess the overall quality of reconstructed speech, we
conducted objective evaluation and subjective evaluation.
For the objective evaluation, we used root mean square log-
spectral distortion (RMS-LSD) to measure how close the
reconstructed speech is to the original one. We calculated
the RMS-LSD for each frame and averaged the RMS-LSD
values. For the subjective evaluation, mean opinion score
(MOS) listening tests were conducted.

4.2. objective evaluation

We measured the RMS-LSD in the missing high frequency
(4-8 kHz). The definition of RMS-LSD is as follows,

D =

√√√√ 1

N

N∑
n=1

1

w2 − w1

∫ w2

w1

[
20 log

(
Gc

An(w)

Ân(w)

)]2
dw (21)

Gc =
1

w2 − w1

∫ w2

w1

[
20 log

(
Ân(w)
An(w)

)]
dw, (22)

where An (w) and Ân (w) denote the original and the recon-
structed power spectrum of nth frame of high frequency re-
spectively, w1, w2 are the lower and higher bound of the miss-
ing high frequency, compensating gain factor Gc has the ef-
fect of removing the mean difference between the two log en-
velopes. The smaller the value of RMS-LSD is, the closer the
reconstructed high frequency is to the original high frequen-
cy, the better the speech quality is. The RMS-LSD results
are shown in Figure 2. Experimental results show that CRB-
M based method has lower log spectral distortion than GMM
and RBM based method.

4.3. subjective evaluation

For MOS tests, 12 participants were asked to listen to the
original speech signals in the test set and the reconstructed

Fig. 2. Results of Objective evaluation

Fig. 3. Results of Subjective evaluation

speech signals for each method, and to select how close the
reconstructed speech is to the original one on a 5-point scale
(1-bad,2-poor,3-fair,4-good,5-excellent). Figure 2 and figure
3 summarize the objective and subjective experimental result-
s. As shown in these figures, ”CRBM” based method outper-
forms other conversional methods (GMM, RBM) in both cri-
teria. The reason for the improvement is attributed to the fac-
t that CRBM can capture time-related information and non-
linear relationship between spectral envelope features of LF
and HF.

5. CONCLUSION

In this paper, we proposed a new speech bandwidth extension
method that combined two conditional restricted Boltzman-
n machines and a neural network to construct a non-linear
relationships between the low frequency’s and high frequen-
cy’s spectral envelope features and capture the time-related
information. The objective evaluation and subjective evalua-
tion showed improvement of the proposed method when com-
pared with the conventional GMM based method and other
network based method.
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