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ABSTRACT

We address the problem of extending the bandwidth of speech sig-
nals, which is of importance to enhance the quality and intelligibility
of the telephone speech. The low-pass filtering effect of the tele-
phone communication channels eliminate the high-frequency com-
ponents of the speech signal, and it is necessary to retrieve those
to maintain the speech quality. We adopt a joint-dictionary training
approach to recover the missing spectral information. By exploit-
ing the sparsity of the spectrogram frames, the dictionaries for the
wide-band (WB) and the corresponding narrow-band (NB) spectro-
gram frames are trained in a coupled manner in order to learn the
mapping from NB to WB frames. We refer to this approach as the
joint dictionary training for bandwidth extension (JDTBE). To en-
sure that the reconstructed bandwidth-extended speech is consistent
with the measurement, we propose to apply a suitable affine transfor-
mation that depends on the properties of the telephone channel. We
study the effect of the choice of sparsity on the quality of the recon-
structed speech, for both male and female speakers. A comparison
of the proposed JDTBE algorithm with a bandwidth extension tech-
nique based on stochastic modeling reveals the superiority of the
JDTBE approach in terms of subjective listening test scores.

Index Terms— Joint dictionary learning, sparsity, bandwidth
extension of speech, consistency criterion, K-SVD algorithm.

1. INTRODUCTION

Due to the limitations of acquisition and transmission systems,
speech acquired or transmitted is usually limited to a particular band
of frequencies. Constraints in bandwidth lead to loss of percep-
tual quality and intelligibility of speech. A typical example of this
phenomenon can be observed in telephone quality speech, which is
limited to the frequency band 0.3 − 3.4 kHz. Absence of the high
frequency components in telephone quality speech leads to a muf-
fled sound, resulting in poor intelligibility. It is observed from the
listening experiments that acoustic bandwidth significantly affects
the perceived speech quality. The speech signals having a band-
width of 50 Hz to 7 kHz obtain a mean opinion score higher than
that obtained by telephone speech [1], almost by a margin of 1.3.
Also, the intelligibility of the non-contextual syllables is reduced
by approximately 90% [2] due to the action of the telephone chan-
nel. Therefore, it is important to retrieve the missing information
in the higher frequency band to create perceptually pleasant and
intelligible speech. We propose a joint dictionary training-based ap-
proach to recover the missing information in the narrowband (NB)
speech. Before explaining the details of our technique, we provide
an overview of the existing literature on bandwidth extension.
Literature review: Most of the existing algorithms for bandwidth
extension are based on the source-filter model of human speech

production. The vocal tract filter, which parameterizes the wideband
(WB) spectral envelope, and the WB excitation signal are estimated
from the observed NB signal. The effectiveness of estimation dif-
fers depending on the modeling accuracy of the joint probability
density of the NB and WB features, along with the choice of those
features. An analysis of the suitability of various features for band-
width extension is available in [3, 4]. Various methods, such as
spectral shifting [5], modulation [6], non-linear processing of NB
excitation [7], etc., have been proposed to generate the WB exci-
tation signal, which is used as the input to the estimated WB filter
to reconstruct WB speech. To estimate the WB excitation signal,
a method based on spectral mirroring and data-driven voice source
modeling [8] have been proposed in [9].
Gaussian mixture model (GMM)-based approaches for modeling
the joint distribution of the WB and NB features have been dis-
cussed in [10–12], where the spectral envelope parameters of the
WB speech are estimated from the NB features using a Bayesian
minimum mean-square error estimate. The idea of using a codebook
to recover the WB spectral information has also been proposed in
the literature [13–16]. Another popular technique to model the joint
distribution of the features in order to retrieve the missing spectral
components is the hidden Markov model (HMM) [7, 17–19]. Pu-
lakka et al. [20] employed a neural network to estimate the WB
mel-spectrum from the observed NB features. Katsir et al. [21]
developed a bandwidth extension method that exploits the pho-
netic content, where each speech frame is classified into a specific
phoneme using a HMM-based statistical model. A technique based
on probabilistic mapping on subspaces was developed in [22],
where one utilizes the inherent sparsity of the state map to generate
the bases of the target subspace. An expectation maximization (EM)
algorithm-based technique was deployed in [23] to obtain the joint
statistics of the WB and the NB features.
Pulakka et al. [24] proposed a bandwidth extension technique by
first performing spectral folding, followed by modifying the high-
frequency magnitude spectra using spline curves, where the spline
control points are determined by using the NB features and sound
classification information. Some other notable algorithms for band-
width extension of speech include temporal envelope model [25],
non-negative matrix factorization [26], etc.
Our contribution: We propose a joint dictionary training approach
for bandwidth extension (JDTBE) of speech, where dictionaries for
the WB and the corresponding NB spectrogram frames are trained in
a coupled manner, over a corpus of speech signals, to learn the joint
sparse representation of the NB and the WB frames. Our method
leverages the sparsity of the spectrogram frames in the trained dictio-
naries while recovering the missing spectral information. A detailed
description of the proposed technique is provided in the following
sections.
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2. PROBLEM FORMULATION AND PROPOSED METHOD

Let snb denote the observed NB speech signal, which can be mod-
eled as a linearly degraded version of the actual WB speech swb.
Given the NB speech signal snb, which contains only the low fre-
quency information of the actual WB signal, our objective is to re-
cover the high-frequency components, and thus reconstruct the WB
speech swb. The problem of bandwidth extension can be thought of
as an inverse problem, where one wants to extrapolate a signal to
higher frequencies from its low-frequency measurement. We next
explain the two stages of the proposed JDTBE algorithm.
1) Training: It has been reported in the speech processing literature
that the spectrogram frames of a speech signal admit a sparse rep-
resentation in an appropriately chosen basis [27]. We exploit the
sparse structure of the spectrogram frames to solve the inverse prob-
lem of bandwidth extension. The appropriate dictionary that yields
the sparse representation is trained on a corpus of speech spectro-
grams. In the training phase, we train two dictionaries jointly on
the concatenated database of WB and the corresponding NB spec-
trogram frames. This objective is accomplished by solving the opti-
mization problem:

min
Dwb,Dnb,xi

N∑
i=1

∥∥∥∥∥
[

y
(i)
wb

y
(i)
nb

]
−
[

Dwb

Dnb

]
xi

∥∥∥∥∥
2

2

s.t. ‖xi‖0 ≤ s,∀i,

(1)
where y

(i)
wb and y

(i)
nb denote the WB and the corresponding NB

frames, respectively in the spectrograms used for training, with i in-
dicating the frame index. The symbol s denotes the sparsity level of
the spectrogram patches. The dictionaries Dwb and Dnb capture the
sparsity of the WB and the corresponding NB frames using the same
sparse coefficient vector xi for each frame i in the spectrogram. The
joint dictionary training problem in (1) is solved via an alternating
minimization approach, where one starts with initial guesses for the
dictionaries Dwb and Dnb. Subsequently, one alternates between
the following two steps: (i) the sparse coefficient vectors xis are
updated for fixed dictionaries using the orthogonal matching pursuit
(OMP) algorithm [28], and (ii) the dictionaries are updated using the
K-SVD algorithm [29]. This process constitutes the joint dictionary
training step of the JDTBE approach.
2) Reconstruction of WB speech: To extend the bandwidth of an
observed NB speech signal, it is first transformed to the spectrogram
domain. Then, for each spectrogram frame y

(j)
nb in the observed NB

speech, the following sparse coding problem is solved, using the
trained NB dictionary Dnb:

x̂
(j)
0 = argmin

z

∥∥∥y(j)
nb −Dnbz

∥∥∥2
2

subject to ‖z‖0 ≤ s. (2)

The estimate of the corresponding WB frame is obtained by y
(j)
wb =

Dwbx̂
(j)
0 , using the trained dictionary Dwb for the WB frames. This

process is repeated for every frame j in the measured NB spectro-
gram to reconstruct the corresponding WB speech.

2.1. Motivation for joint training

The fundamental assumption behind the JDTBE approach is that
the spectrogram frames admit a sparse representation in an ap-
propriate basis. Let s

(i)
wb denote the ith segment of WB speech

signal, multiplied by a window. The effect of the telephone channel
can be modeled using a low-pass filter h(n) followed by a down-
sampler D. The output of the low-pass filter in the time-domain

is given by s
(i)
wb(n) ∗ h(n). Subsequently, the down-sampler acts

on the output of h(·) and the resulting NB frame can be written
as s

(i)
nb(n) = s

(i)
wb(m) ∗ h(m)

∣∣
m=2n

. In the frequency domain,
the relation between the WB frames and their NB counterparts is
given as S

(i)
nb (ω) = 1

2
H
(
ω
2

)
S

(i)
wb

(
ω
2

)
. We train the dictionar-

ies in the spectrogram domain, which is computed by taking the
modulus of the short-time-Fourier-transform (STFT), and given
by y

(i)
nb (ω) = 1

2

∣∣H (ω
2

)∣∣y(i)
wb(

ω
2
). The relation between the WB

spectrogram frames y
(i)
wb and their corresponding NB counterparts

y
(i)
nb can be expressed as a linear operation, which we write as

y
(i)
nb = Ay

(i)
wb. Using the assumption that the WB frames in the

spectrogram domain admit a sparse representation in a dictionary
Dwb, one can write y

(i)
nb = ADwbxi, where xi is the corresponding

sparse coefficient vector. Therefore, we note that the ith WB spec-
trogram frame and its corresponding NB frame can be represented
using the same sparse coefficient xi. This observation forms the
basis of the joint training approach in (1), where the objective is to
learn a sparse representation of the WB and NB frames using two
different dictionaries and an identical sparse coefficient vector. The
assumption of common sparse representation of the WB and the NB
frames is further exploited during the bandwidth extension stage
using the trained dictionaries.

2.2. Consistency Criterion

The NB part of the speech spectrogram contains considerable
amount of information, which should be preserved in the process of
extrapolation to the high-frequency components. Failure to accom-
plish this may lead to a loss of intelligibility in the enhanced speech.
In order to ensure that the NB spectrogram is not tampered, one
must enforce the condition that the reconstructed WB speech ŝwb is
consistent with the observed NB speech snb, that is, ŝwb should ex-
actly match with snb when subjected to low-pass filtering, followed
by the downsampling effect of the telephone channel. Denoting
the combined linear degradation operation of low-pass filtering and
downsampling by P , we want to enforce P ŝwb = snb. This is
achieved by solving the quadratic minimization problem with the
desired linear equality constraint, given by

ŝ
(c)
wb = argmin

s

1

2
‖ŝwb − s‖22 subject to Ps = snb, (3)

where ŝ
(c)
wb is the reconstructed WB speech that satisfies the con-

sistency criterion. The superscript c is used to emphasize that the
reconstructed signal is consistent with the observed NB signal. The
optimization problem in (3) can be solved in closed form and the
solution is given by

ŝ
(c)
wb = ŝwb − PT

(
PPT

)−1

(P ŝwb − snb) . (4)

The expression for final reconstructed WB speech ŝ
(c)
wb in (4) is a

combination of the dictionary based reconstruction ŝwb and a cor-
rection term, which takes value zero if ŝwb is consistent with the
observed NB speech snb. The imposition of consistency can be in-
terpreted as a projection operation, where one computes the final
enhanced signal in such a way that it is closest to the one obtained
using the trained dictionary and its NB spectrogram exactly matches
the measurement. We refer to the approach of enforcing consistency,
following the dictionary-based reconstruction as JDTBE-CON. Ex-
perimental results indicate that the imposition of the consistency cri-
terion significantly improves the quality of the reconstructed speech.
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Fig. 1. Performance of the JDTBE algorithm for dictionaries trained
with different sparsity levels. The top and the bottom rows corre-
spond to female and male speakers, respectively.

3. EXPERIMENTAL RESULTS

3.1. Implementation details

The experiments are conducted using speech files from the TIMIT
database. In the simulations, the WB signals, containing components
up to 8 kHz frequency, are filtered using a telephone channel fil-
ter to obtain the NB signal, having frequency components from 0.3
kHz up to 3.4 kHz. For computing the spectrogram, we consider
frame length of 32 ms, with 50% overlap between adjacent frames,
and a Hamming window. Discrete Fourier transforms (DFT) of 512
and 256 points are calculated to obtain the WB and the correspond-
ing NB spectrograms, respectively. The frames of the WB and NB
spectrograms, stacked on top of each other, are used as the feature
vectors for learning the dictionaries. Since the DFT coefficients are
conjugate symmetric, redundant points are removed while training.

Consequently, the joint dictionary Djoint =

[
Dwb

Dnb

]
has atoms of

size 1 + 512
2

+ 1 + 256
2

= 386, stacked as columns. We fix the
number of atoms in the joint dictionary to be twice the atom dimen-
sion, so that Djoint is of size 386 × 772. We use 40, 000 spectro-
gram frames computed using the utterances of 10 different speakers
for training. Separate dictionaries are trained for male and female
speakers. Once the training stage is over, the top 257× 772 and the
bottom 129×772 blocks in Djoint are saved as the dictionaries for the
WB and NB frames, respectively. While using the trained dictionar-
ies for bandwidth extension, speech files and speakers different from
the ones used for training are considered. We combine the replica of
the observed NB phase with the spectral magnitude reconstructed in
the high-frequency band using the dictionaries.

3.2. Performance of the JDTBE approach

To assess the quality of the enhanced speech obtained using the
JDTBE method, we use the log-spectral distortion (LSD), averaged
over 10 speech files, as the performance metric. We denote the LSD

by dLS, and it is defined as

dLS =

 1

ωh − ωl

∫ ωh

ωl

20 log

 |Py(ω)|∣∣∣P̂y(ω)∣∣∣
2

dω


1
2

,

where Py(ω) and P̂y(ω) denote the spectra of the original and the
estimated WB speech. The frequencies ωl and ωh should be chosen
depending on which part (low or high-frequency band) of the speech
spectrum we want to compare against the corresponding part of the
original WB speech. For example, to measure the proximity of the
lower-band of the enhanced speech with that of the original, one
must set ωl = 0 and ωh = π

2
.

In Fig. 1, we show the average LSD values, obtained using the
JDTBE approach for both male and female speakers, as a function
of the sparsity level s. From Figures 1(a) and 1(c), we observe that
the LSD over the low-frequency band decreases with increase in s.
However, it almost saturates as s increases beyond 32. The LSD
value over the low-frequency band for the measured NB signal is
shown in dashed lines for facilitating a comparison. We observe
that the low-frequency LSD of the reconstructed WB speech goes
below that of the measured NB speech, as s exceeds 16 and 4, cor-
responding to female and male speakers, respectively. The reason
behind the reduction of the LSD over the low-frequency band is due
to the ability of the JDTBE approach to reconstruct missing spectral
components in the range 0 − 0.3 kHz and 3.4 to 4 kHz. Increasing
s has the effect of making more atoms in the dictionary available for
representing the NB spectrogram frames, thereby reducing the error
over the low-frequency band. However, further increasing s results
in marginal reduction in error, and consequently the LSD saturates.
From Figures 1(b) and 1(d), we observe that, for both male and
female speakers, the LSD over the high-frequency band attains a
minimum for a sparsity level of s = 4, and it increases for higher
values of s. The reason behind this phenomenon is explained as fol-
lows. In the bandwidth extension stage, one only has access to the
observed NB spectra. By increasing s in (2), one allows more atoms
to be chosen from Dnb to represent the NB spectrogram frames,
thereby reducing the discrepancy over the low-frequency part of the
spectra. However, since the same coefficients obtained from (2) are
combined with Dwb to obtain the WB signal, increasing s beyond
a point can potentially introduce error in the higher-frequency band
owing to the use of unnecessary atoms from Dwb. We find experi-
mentally that s = 4 yields optimum reconstruction of the missing
high-frequency band. We also observe from the Figure 1 that im-
posing the consistency criterion further reduces the LSD values over
both high- and low-frequency bands.
The spectrograms of the bandwidth-extended speech, using the
JDTBE approach, without and with the consistency criterion im-
posed, are shown in Figures 2(c) and (d), respectively. The spectro-
grams of the input NB and the actual WB speech are also shown to
facilitate visual comparison. The sparsity level s chosen for training
as well as reconstruction is 4. We observe that the JDTBE algorithm
recovers the missing high-frequency part of the input NB spectro-
gram reasonably well. After imposing consistency, we note that the
spectrogram in the lower-band of the reconstructed signal closely
matches that of the original WB signal. One can observe from the
spectrogram of reconstructed signal that, in the regions 0− 0.3 kHz
and 3.4 − 4 kHz, the JDTBE-CON approach does a better job of
recovering the spectral content, which is absent in the observed NB
signal. This fact is also reflected in the LSD values of the recon-
structed speech obtained after imposing the consistency criterion.
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The boxes in the spectrograms are used to highlight a particular
region where the reconstruction obtained using the JDTBE-CON
approach matches the corresponding part of the WB spectrogram
more closely than JDTBE.

3.3. Description of the listening test
We performed a listening test using a high quality headphone
(Sennheiser HD 215) to assess the perceptual quality of the bandwidth-
extended speech using the JDTBE and the method proposed by Qian
et al. [11]. A pairwise listening test is performed, where the listeners
are asked to rate two speech signals A and B in the scale of −3 to
+3, in steps of 1. The scores reflect the quality of B compared with
A and their meanings are as follows: +3 : much better, +2 : better,
+1 : slightly better, 0 : about the same, −1 : slightly worse, −2 :
worse, −3 : much worse. During the test, listeners were allowed to
listen to the signals repeatedly, if needed. They were also given the
flexibility to adjust the sound level to a comfortable value. We made
use of 10 male and 10 female speech files in the experiment, and five
listeners participated in the test. The final scores are calculated by
averaging over all the listeners and the files. The speech files used
for subjective evaluation are available online1. In Table 1, we show

A↔B (B compared with A) Male Female

NB↔JDTBE (4) 0.04 −1.34
NB↔JDTBE-CON (4) 2.02 1.79

NB↔JDTBE (64) 0.87 0.74

NB↔JDTBE-CON (64) 1.98 1.33

NB↔WB 2.7 2.72

NB↔SMBE 0.8 0.93

JDTBE(4)↔JDTBE-CON (4) 1.95 1.76

JDTBE (64)↔JDTBE-CON (64) 0.81 0.26

JDTBE-CON(64)↔JDTBE-CON (4) 0.14 0.04

JDTBE-CON(4)↔SMBE −1.32 −0.82
WB↔WB 0.06 0.04

WB↔JDTBE-CON (64) −0.5 −0.63

Table 1. Comparison in terms of listening test scores. The numbers
inside the parentheses indicate the corresponding sparsity level s.

the listening test scores of the bandwidth-extended speech using
the JDTBE and JDTBE-CON algorithms for two different values of
s, in comparison with the NB, original WB, and the reconstructed
WB speech obtained using the method proposed in [11], which we
refer to as stochastic-modeling-based bandwidth extension (SMBE)
in the table. We report the scores corresponding to two sparsity
levels, s = 4 and s = 64. For both sparsity levels, the JDBTBE-
CON achieves higher listening test scores, for both male and female
speakers, as compared with the observed NB speech and the re-
constructed WB speech using the SMBE technique. The JDTBE
algorithm, for s = 64, is rated on par with the SMBE technique by
the listeners. The score obtained by JDTBE for s = 4 is slightly
inferior compared with that obtained by the measured NB input. We
observe that the scores achieved with the JDBTE-CON approach
are consistently better than that obtained with the JDBTE algorithm.
However, as s increases, the improvement obtained by applying
the consistency criterion tends to become marginal. Among the
techniques compared, the JDBTE-CON approach with s = 4 is
observed to perform better than the competing techniques in terms
of the listening test scores.

1http://spectrumee.wix.com/abwe.
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(a) Observed NB speech
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(b) Actual WB speech
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(c) Reconstructed WB speech, without enforcing consistency
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(d) Reconstructed WB speech, with consistency (JDTBE-CON)

Fig. 2. (Color online) Spectrograms of the reconstructed WB speech,
with and without enforcing the consistency criterion, for s = 4.

4. CONCLUSIONS

We have proposed a bandwidth extension method for speech signals
based on a joint dictionary training approach that recovers the miss-
ing spectral information in telephone channel speech. The WB and
the corresponding NB spectrogram frames are used as features for
training the dictionaries. The central idea behind the technique is to
leverage the sparsity of the spectrogram frames in the trained dic-
tionaries. We have demonstrated that the reconstruction quality can
be further improved by imposing the consistency criterion, that is,
by enforcing the low-frequency spectra of the reconstructed speech
to exactly match that of the measured NB signal. Performance eval-
uation in terms of subjective listening test scores indicates the su-
periority of the proposed algorithm to a competing technique based
on stochastic modeling proposed in [11]. The idea of joint dictio-
nary learning could potentially find application to a more general
class of problems, such as recovering missing patches in spectro-
grams, removing the artifacts introduced by denoising algorithms,
post-processing of speech generated by text-to-speech converters to
improve the naturalness, etc., and warrants further investigation.
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