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ABSTRACT

In announcement and communication systems, clean speech is often
played back by loudspeakers in the presence of local background
noise which decreases intelligibility. Speech reinforcement is a
technique that enhances the intelligibility by adaptively filtering the
speech, usually based on measured noise characteristics. In this con-
tribution, solutions known from literature are applied to the case of
public address systems where the microphone for noise measurement
and the loudspeaker are close to each other and are far away from
the listener on the ground. After establishing an acoustical model,
the main problems are identified to be strong echoes between loud-
speaker and microphone which make conventional noise estimation
impossible and lead to an unstable system. A new approach including
echo path estimation and echo-aware noise estimation is proposed
and evaluated by means of simulations.

Index Terms— Speech reinforcement, Speech enhancement,
Noise measurement, NELE

1. INTRODUCTION
This contribution addresses the topic of speech reinforcement for
public address systems using the example of speech announcements
at the platform of a railway station. The intelligibility is often affected
due to strong and time-varying background noise, caused by passing
trains, train engines etc. While the noise cannot be combated, the
intelligibility can be improved by time-adaptive speech processing,
which may cover several aspects like modifying the speech level or
reallocating spectral power. Many conventional algorithms require
knowledge on the background noise to permit optimized processing
for any noisy environment. Knowledge on the noise characteristics is
therefore essential and can be obtained by means of microphones at
the listener’s position. For practical reasons the microphones are not
installed directly on the ground of the platform but farther away from
the ground and very close to the loudspeaker. This increases the echo-
to-noise ratio ENR at the microphone, where the (undesired) echo
originates from the loudspeaker and the noise is the (desired) back-
ground noise from the ground. For a measured ratio of ENR=45 dB,
conventional echo cancellation (EC) methods and noise trackers fail,
leading to an unstable reinforcement system. In this contribution, we
present an echo-aware noise estimation algorithm which successfully
estimates the noise characteristics despite severe echoes.

1.1. Relation to prior work
Speech reinforcement systems such as [1, 2, 3, 4, 5, 6] enhance the
speech signal in noisy environments. Most of them exploit knowl-
edge on the local background noise. In the context of mobile phones,
speech reinforcement is called Near-end Listening Enhancement
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Fig. 1: Model of the acoustical part of a public address system

(NELE). NELE improves the down-link speech intelligibility of mo-
bile phones in the presence of strong acoustical background noise. In
[1] and [2], the authors present an efficient optimization algorithm
which maximizes the Speech Intelligibility Index (SII) [7] under
power constraints. Several parameters allow to set upper bounds for
the total speech power or for the power per sub-band. To evaluate
the performance, the algorithm is usually restricted to not increase
the total audio power. With this constraint, the intelligibility can be
improved by more than 35 percentage points [8].

Listening enhancement algorithms have been adapted to several
real-time applications like hand-held telephony [9] and hands-free
telephony in cars [8]. The authors of [5] consider a joint optimization
for different interfering playback zones, which can be applied at
railway stations, for instance. Recently, intelligibility degradations
due to reverberation have been integrated into the optimization [6].

Methods for estimating noise from a noisy signal, i.e., a speech
signal degraded by noise, are well studied in the field of noise re-
duction. Possible algorithms are Minimum Statistics [10], Speech
Presence Probability (SPP) [11], Baseline Tracing (BT) [12] and
approaches based on adaptive codebooks [13, 14].

2. SYSTEM MODEL

Fig. 1 shows a model of the system. Loudspeaker and microphone
are located on top of the platform, whereas the listener and the noise
source are on the ground. Audio signals on the ground are indexed
with ‘g’, signals at the microphone with ‘m’ and signals at the loud-
speaker with ‘l’. The transfer functions microphone-ground and
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Fig. 2: Model of the digital part of a public address system with listening
enhancement (NELE)

ground-loudspeaker are unknown and cannot be measured without
any microphone on the ground. However, at least the level atten-
uation can be quantified. The corresponding attenuations Ag and
Am are known a priori and are given as positive dB-values based
on offline measurements. The coefficients of the time-variant echo
path between speaker and microphone are represented as the vector
h(k) of length lh and with time-index k. The operator ‖·‖ denotes
the quadratic vector norm. The echo path may also include a path
loss Ah(k) = −10 log10 ‖h(k)‖2 which for simplicity is assumed to
be constant over time and therefore called Ah. The echo path can be
estimated adaptively, e.g., [15]. The estimated filter coefficients are
called ĥ(k) and their quality is measured by the system distance

dist =
‖h− ĥ‖2

‖h‖2
. (1)

The digital system is illustrated in Fig. 2. The NELE optimiza-
tion needs the correct sound pressure levels of speech and noise on
the ground because it takes psycho-acoustical effects into account.
However, the system has only access to the levels at the loudspeaker
and the microphone. In order to derive the levels on the ground, the
path losses must be compensated for. The enhanced speech sg(k) is
amplified by Ag before it is played back by the loudspeaker and the
recorded signal of the microphone is amplified by Am. Succeedingly,
a noise estimation is performed based on the amplified microphone
signal x′m(k) and also on the estimated echo ŝ′m(k) as further infor-
mation. Finally, listening enhancement is carried out using the noise
estimation |N̂(λ, µ)|2 in the frame-based frequency domain (frame
index λ, frequency index µ) and the unprocessed speech s(k). For
the listening enhancement stage, we employ NELE [2] in a mode
which allows additional audio power up to a total sound pressure
level of 90 dB on the ground.

3. PROBLEM ANALYSIS
At first, the system model (Figures 1 and 2) will be compared to exist-
ing applications and afterwards, differences and emerging problems
will be highlighted.

Previously, the proposed NELE algorithm has been used for
hand-held telephony, e.g., without doubletalk and without coupling of
microphone and loudspeaker [9]. This case is included in the current
model by setting h(k) = 0 and Ag = Am = 0 dB. Since x′m(k)
contains exclusively background noise, it is sufficient to use a simple
energy-based approach for noise estimation. Listening enhancement
has also been used for hands-free telephony with moderate acoustic
echoes between speaker and microphone [8]. Our system can be
attributed to this case by setting Ag = Am = 0 dB and by using a
room or free-field impulse response h(k) with Ah ≥ 0 dB. Since

x′m(k) contains (desired) noise and (undesired) echoes, the noise esti-
mation block is realized in the telephone application as a conventional
echo canceller with subsequent energy estimation.

In the following, a problem description will be given. In the case
of public address systems, it is necessary to distinguish between the
signal-to-noise-ratio on the ground (SNR) and the echo-to-noise-ratio
at the microphone (ENR) due to path losses. They are related by (cf.
Fig. 1)

ENR = SNR +Ag −Ah +Am [dB]. (2)

Assuming that microphone and loudspeaker are close to and direct
to each other (Ah = 0 dB) and are located far from the ground
(typically: Ag = Am = 15 dB), ENR can be dramatically higher
than SNR. Moreover, passing trains may lead to fast changing noise
with high level dynamics. Also reverberation which is included
in h makes the estimation more difficult. These effects lead to two
problems, namely an unstable NELE circuit and the need for a reliable
estimator of the noise spectrum despite very strong echoes.

The system may become unstable because the signal flow from
NELE over h(k), Noise Estimation back to NELE forms a closed
loop. This loop is analyzed in the following with the aid of a level
model (Fig. 3). The NELE algorithm operates in critical bands (Bark
scale) and modifies the clean speech s to achieve maximum intel-
ligibility according to the SII model. The SII model predicts the
maximum contribution to the intelligibility if the signal-to-noise ratio
in each critical band is at least ASII = 15 dB. An optimum NELE
algorithm would modify the clean speech s such that the signal levels
in the bark bands are ASII above the corresponding Bark noise levels
of n̂. Therefore, the NELE algorithm is represented in the level model
as an amplifier which sets the level of sg such that it is ASII higher
than the level of the estimated noise n̂. The absolute level may be
clipped with respect to psychoacoustical limits. The level model
illustrates a backward influence on the noise estimation with a loop
gain of GL =ASII+Ag−Ah+Am≈45 dB. Since GL > 0 dB, the
speech level in sg would rise infinitely and cause an unstable loop.
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Fig. 3: Level model of the system. The gains Am and Ag compensate for the
acoustical path losses

One attempt to achieve stability could be to modify the Noise
Estimation such that an echo canceller preceeds the energy measure-
ment. It will attenuate the echo level by GNE. For stability, the loop
gain must be compensated for by the noise estimation:

GNE ≥ ASII +Ag −Ah +Am. (3)

In theory, this is possible since high ENRs improve the perfor-
mance of an echo canceller. However, practical echo cancellers are
not able to track the increasing echo fast enough. Therefore, we com-
bine an echo canceller with a noise tracker to accomplish stability.

Candidate trackers are Minimum Statistics [10], SPP [11] and
Baseline Tracing [12]. All of them work in the frequency domain
and produce an estimate |N̂(λ, µ)|2 of the noise periodogram which
should not be influenced by speech in theory. As proposed in [11] the
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estimation quality is rated by the logarithmic error distortion measure

LogErr =
1

LMF

L∑
λ=1

MF∑
µ=1

∣∣∣∣∣10 log10

(
|N(λ, µ)|2

|N̂(λ, µ)|2

)∣∣∣∣∣ (4)

with the FFT-lengthMF andL being the number of frames. Moreover,
LogErrOver (LEO) rates the errors due to overestimations:

LEO =
1

LMF

L∑
λ=1

MF∑
µ=1

∣∣∣∣∣min

(
0, 10 log10

(
|N(λ, µ)|2

|N̂(λ, µ)|2

))∣∣∣∣∣ . (5)

All these noise trackers are designed for moderate signal-to-noise
ratios in the range [−5 dB, 15 dB], but they fail in extreme situations
with ENR ≈ 45 dB as considered here. In this scenario, speech
leads to over-estimations of |N̂(λ, µ)|2 since it is wrongly estimated
as noise. Fig. 7c visualizes the over-estimation problem and Fig. 5
illustrated that this effect is increasing with ENR. Our simulations
have confirmed that stability cannot be achieved.

The noise estimation gain GNE for the stability criterion in Eq. 3
cannot be derived in a closed form. Therefore, we investigate the
relationship between LEO and the power of the amplified speech
s′m (cf. Fig. 2) by means of simulations. A sufficient condition for
stability is given if LEO does not increase with rising levels of s′m.
In this case, the closed loop in the level model (Fig. 3) is opened at
the noise estimation.

4. PROPOSED NOISE ESTIMATION

In this section, we present a new noise tracker based on the baseline
tracing approach [12] that can handle high ENRs and fulfills the
stability requirement. It exploits as shown in Fig. 2 the amplified noisy
microphone signal x′m(k) and additional knowledge on the estimated
echo ŝ′m(k) to estimate the noise periodogram. Its general idea is to
decelerate or even freeze the adaptation in time-frequency-bins where
the echo level is high compared to the noise level, whereas pursuing
fast adaptation in time-frequency-bins under better conditions.

The noise estimation’s time and frequency resolution does not
need to be as high as for applications like noise reduction since NELE
averages |N̂(λ, µ)|2 in terms of time and frequency. Moreover, time
delays in the range of up to one second are not critial with respect to
the perceived audio distortion. In case of too fast varying background
noise the adaptation is decelerated and the intelligibility decreases
temporarily, but this effect is not perceived as unpleasant.

The block diagram in Fig. 4 shows the proposed noise estimator
which is used in Fig. 2. At first, an analysis transforms the input
signals x′m(k) and ŝ′m(k) to the frequency domain by means of seg-
mentation, windowing and Fast Fourier Transformation (FFT). For
simplification, the time- and frequency indices λ and µ are omitted
in the following. The dashed part is a conventional baseline tracer as
proposed in [12]. In ordinary applications, the input of the baseline
tracer is the noisy microphone signal. Here, an echo cancellation is
performed beforehand such that the input X ′m − Ŝ′m is composed of
noise and residual echo.

4.1. Stepsize Control Rule
The stepsize control unit is the central element which enables the
state-of-the-art noise tracker to measure noise in the presence of
strong echoes. The baseline tracer tracks the noise by multiplying
the previous estimation with a linear gain β or adding a logarithmic
gain ∆ = lnβ, respectively: ln |N̂(λ, µ)|2 = ln |N̂(λ − 1, µ)|2 ±
∆(λ − 1, µ). Based on Ŝ′m and |N̂ |2, the stepsize is chosen to be
low if the echo is significantly louder than the noise estimation in
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ŝ′m(k)
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S′m(λ, µ)

−

−

∆(λ−1, µ)

FFT

FFT
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|N̂
(λ
,µ
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Fig. 4: Proposed noise estimator. FFT denotes the Fast Fourier Transformation.
The dashed rect represents the baseline tracing algorithm [12]

order to freeze the adaptation. In the opposite case, when the echo
level is low compared to the noise, a high stepsize permits to track
the noise quickly. The baseline tracer provides the noise estimate
|N̂ |2 which is passed to NELE. This estimate leads to stability due
to slow adaptations in speech periods, but noise level rises during
speech cannot be tracked.

To avoid freezing when the noise level increases during a speech
period, a second internal noise estimation is performed:

|N̂int|2 = max
(
X2 − S2, 0

)
. (6)

X2 and S2 are obtained using a causal moving average filter (MA)
of length tMA (or an equivalent autoregressive filter):

X2 = MA
(∣∣X ′m∣∣2) , S2 = MA

(
|Ŝ′m|2

)
. (7)

The internal estimate |N̂int|2 alone would not meet the stability re-
quirements, but it can detect unexpected high input levels at X ′m
which result from rising noise levels. For the stepsize control, both
noise estimations are combined according to

|N̂c|2 = max
(
|N̂ |2, |N̂int|2

)
. (8)

The inverse of the a-posteriori SNR γ

1

γ
=

|N̂c|2

|N̂c|2 + |Ŝ′m|2
∈ ]0, 1] (9)

is a soft-value indicator between zero (exclusively echo, no adapta-
tion) and one (exclusively noise, fast adaptation). Based on this, the
linear tracing factor β from [12] is determined to

β(λ, µ) = 1 + γ−1(λ, µ) · c · LA

fs
(10)

with the frame advance LA and a sampling frequency fs. The ad-
justable parameter c is usually chosen to allow a maximum change of
12 % in 10 ms, i.e., c = 0.12/10 ms.

5. SIMULATION
The proposed algorithm is evaluated by means of simulations using
the parameters from Table 1. We use three noise recordings from a
railway station1 (two passing wagon trains, one departing passenger
train). The recorded trains cause noise levels of up to 87 dB and
high level differences. A passing wagon train lets the noise level rise
from 67 dB to 87 dB, for example. 500 seconds of speech are taken
randomly from the TIMIT database [16]. For the path losses, we set
Ag = Am = 15 dB and normalize h such that Ah = 0 dB.

The estimator of the time-variant impulse response needs to be
adapted on-line. High values of ENR on the one hand make the noise

1The measurements have been carried out at the central railway station of
Aachen, Germany, with the kind permission of Deutsche Bahn AG.
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Fig. 6: Relation between log. error and system distance of different noise
trackers with preceding echo cancellation. ENR = 45 dB, NELE disabled

estimation more difficult, but on the other hand they simplify the
estimation of the echo path. It is even possible to play back perfect
orthogonal sequences or sweeps during speech pauses to enhance the
system identification [17]. When setting the sequence’s level such
that people on the ground can hardly perceive it due to masking, e.g.,
SNR ≈ −15 dB, the echo-to-noise ratio ENR at the microphone,
which is directly related to the resulting system distance, amounts
approximately to 15 dB. This allows better estimations than typical
echo cancellation applications.

In contrast, in our simulations h is time-invariant and ĥ is adapted
once at the beginning of each noise file using a perfect sweep. Sim-
ulations with time-variant echo paths are not necessary because the
system is robust to very high system distances (Fig. 6), i.e. to strong
errors of the echo canceller. The impulse response h has been mea-
sured at the railway station mentioned above.

First, the performance of the proposed noise tracker is compared
to the state-of-the-art trackers SPP [11] and Baseline Tracing [12].
An echo canceller that subtracts the estimated echo from the noisy
input, i.e., x′m(k)− ŝ′m(k), preceeds the noise trackers. The system
distance between h and ĥ equals dist = −10 dB and leads to an
echo cancellation gain of 18 dB which is a realistic value for echo
cancellers. The simulation results (Fig. 5) show that for ENRs higher
than 23 dB, the total logarithmic error of the proposed approach
is always lower or equal to the error of the reference algorithms.
For ENRs below 23 dB, an echo canceller without noise tracker, i.e.
|N̂(λ, µ)|2 is derived from the error signal x′m(k)− ŝ′m(k), performs
better and is therefore the best choice in this range.

Moreover, we deduce from the simulation results that the pro-
posed algorithm, in contrast to the reference algorithms, achieves
stability. Fig. 5 shows that LEO of the proposed algorithm does not
increase with ENR in the considered range. Consequently, it does
not increase with rising levels of s′m(k) either. According to Sec. 3,
this fulfills the stability condition which is also confirmed by informal
listening tests.

Parameter Settings

Sampling frequency fs 16 kHz
Frame length M 320 =̂ 20 ms
Frame advance LA 160 =̂ 10 ms

Frame overlap 50% (
√

Hann-window)
FFT length MF 512
Moving average time tMA 200 ms
Impulse response length lh 8000 =̂ 0.5 s
Path losses Ag, Am, Ah 15 dB, 15 dB, 0 dB

Table 1: Simulation settings

A second simulation investigates the performance for different
system distances (Fig. 6). The result shows that the proposed algo-
rithm can work with high system distances between h and ĥ which
can occur when changes in h are not tracked sufficiently quick.

Thirdly, an example of one noise type combined with one speech
file is visualized graphically. Fig. 7 shows a) the noise (ng) spec-
trogram of a passing wagon train as well as the estimated noise
periodograms when using b) the proposed algorithm and c) SPP. The
estimation is performed on the basis of x′m = ng +s′m, i.e., noise and
additive speech. While SPP still detects speech as noise, the proposed
algorithm produces a realistic estimation of the noise.

(a) Noise signal ng
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Fig. 7: Spectrogram of noise and periodograms of noise estimations. ENR =
45 dB, dist = −10 dB

6. SUMMARY
The application of speech reinforcement with microphones and loud-
speakers, which are close to each other and distant from the target
area, has been analysed and has lead to the problem of noise estima-
tion with severe echoes. To cope with the echoes and ensure stability,
combinations of echo cancellation and several conventional noise
trackers have been investigated. Since none of them provided satis-
fying results, a new echo-aware noise estimator has been developed
which outperforms the regarded algorithms in terms of the logarith-
mic estimation error. Moreover, in contrast to the compared reference
algorithms, the proposed algorithm fullfills the stability condition
which has been derived in this contribution.
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