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ABSTRACT

In studies on artificial bandwidth extension (ABE), there is a lack of
international coordination in subjective tests between multiple meth-
ods and languages. Here we present the design of absolute category
rating listening tests evaluating 12 ABE variants of six approaches in
multiple languages, namely in American English, Chinese, German,
and Korean. Since the number of ABE variants caused a higher-
than-recommended length of the listening test, ABE variants were
distributed into two separate listening tests per language. The pa-
per focuses on the listening test design, which aimed at merging the
subjective scores of both tests and thus allows for a joint analysis of
all ABE variants under test at once. A language-dependent analy-
sis, evaluating ABE variants in the context of the underlying coded
narrowband speech condition showed statistical significant improve-
ment in English, German, and Korean for some ABE solutions.

Index Terms— listening test, ACR, artificial bandwidth exten-
sion

1. INTRODUCTION

Artificial bandwidth extension (ABE) belongs to the class of speech
enhancement algorithms and aims at improving speech quality as
well as speech intelligibility by extending a speech signal in its
acoustical bandwidth. Given an incoming narrowband (NB) speech
signal, i.e., a signal sampled at f ′s =8 kHz, ABE solutions estimate
and subsequently synthesize frequency components in the upper
band (UB), i.e., the frequency range 4 kHz < f ≤ 8 kHz, and thus
close up to so-called HD voice calls. HD voice stands for coded
wideband (WB) speech, i.e., speech signals sampled at fs=16 kHz

∗The author is now with Nuance Communications Canada, Inc.

with an acoustical bandwidth up to 7 kHz. In WB speech, syllable
intelligibility rises from 90% to 98% [1], while at the same time, the
perceived speech quality gains about 1.3 mean opinion score (MOS)
points in German language [2]. However, HD voice calls require
the participants of a call to be in WB-capable mobile cells, use WB-
capable handsets, be client of a WB-capable operator (inter-operator
HD voice calls are often a problem), and the complete transmission
path between the mobile cells also has to be WB-capable [3]. When-
ever at least one of these requirements is not met, ABE solutions
can serve as fallback to maintain speech intelligibility and speech
quality to a certain degree.

Most of today’s ABE solutions divide the extension process by
means of the source-filter model into two subproblems: estimation
of a spectral envelope as well as generation of a suitable residual
signal, both for higher frequency components. Besides solving these
subproblems, some ABE solutions go further and also modify the
NB input signal, e.g., via equalizing [4]. Known techniques for the
estimation of spectral envelope are, for example, Gaussian mixture
models (GMMs) [5], hidden Markov models (HMMs) [6–8], (deep)
artificial neural networks (ANNs) [7, 9], and others. The generation
of a residual signal might be based on noise and/or impulse genera-
tion [5], modulation of the NB residual signal [6, 7, 10], and others.

For the time being, subjective listening tests are the only reliable
evaluation method for ABE solutions [11, 12], especially w.r.t. rank
order prediction of different ABE schemes. Typical subjective eval-
uations in the context of ABE schemes follow testing methods, stan-
dardized in [13], namely absolute category rating (ACR), degrada-
tion category rating (DCR), and comparison category rating (CCR).
In [14] several ABE solutions were also tested in an anonymous
fashion and compared in terms of statistical reliability to instrumen-
tal measures for speech quality prediction. The underlying listening
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test was conducted in German. In [7, 11] ACR and CCR tests were
conducted in German to evaluate two ABE solutions. Subjective lis-
tening tests of variants of a single ABE solution were performed in
three languages in [15].

This paper describes a unified ACR listening test setup, test-
ing conditions in the same manner in each language and using data
from the same database, thus ensuring comparability throughout lan-
guages and conditions under test. Technische Universität Braun-
schweig and NXP Software conducted the ACR listening tests in
American English, Chinese (Mandarin), German, and Korean, eval-
uating 12 variants from six different institutions or consortia. In this
study, we focused on WB ABE solutions that can be implemented at
the receiving side of a (mobile) telephony call.

The remainder of this paper is organized as follows. First, in
Sec. 2, the listening test design is described. Subsequently, the pre-
processing chain to create the conditions under test is explained in
Sec. 3. The ABE approaches under test are briefly described in Sec.
4. Afterwards, in Sec. 5 the results over the different conditions per
language are shown and discussed. A conclusion is given in Sec. 6.

2. OVERVIEW OF THE TEST DESIGN

The test was prepared similarly as described in [11], following
largely ITU-T Recommendation [13] for ACR listening tests. The
test was conducted with 48 listeners in four languages: American
English, Chinese (Mandarin), German, and Korean. For each lan-
guage the speech material consisted of the recordings of two male
and two female speakers, four utterances per speaker. One of these
utterances per speaker was used in a preliminary familiarization
phase. The remaining three utterances were used in the main test.
Since 12 variants of ABE solutions were tested, two listening tests
(LTs) were prepared, namely LT1 and LT2, each designed to evaluate
6 ABE variants. To create a point of reference for ABE algorithms,
16 (= 7 NB and 9 WB) anchor conditions were included into each
test, giving in total 22 conditions per LT. The files of each LT were
further divided into three listening panels, each of them representing
a disjoint set of different files, presented in random order, while still
all conditions were included. This enabled evaluating a larger set of
samples (12 speech files per condition per LT) without excessively
extending the test duration.

Age and gender distribution for all conducted listening tests are
shown in Table 1. Participants were all native speaker of the respec-
tive test language and stated to not suffer from hearing impairment.
Mono audio files at 79 dB SPL were played through a Roland
Octa-Capture interface and listened to with a monaural closed-
back Sennheiser HD-25 II headphone. A proper equalization
was applied to compensate for the headphones’ frequency response.

A preliminary listening test, containing 32 files selected from
anchor conditions, was performed to provide a proper reference and
familiarize the listeners with the test procedure. The speech codecs
and ABE versions were simulating different telephone speech con-
ditions, whereas the MNRU conditions mainly served as reference
anchors to exploit the range of the ACR scale in MOS from 1 (bad)
to 5 (excellent).

3. DATA PREPROCESSING

A speech corpus recorded by Speech Ocean [16] was used, employ-
ing the same recording environment for all of the tested languages.
The corpus is sampled at 48 kHz. The preprocessing chain is de-
picted in Fig. 1. To create a point of reference for the ABE solutions
under test, 16 anchor conditions, more precisely 7 NB and 9 WB an-
chor conditions were processed and became part of every listening
test. The preprocessing is based on [17].

Language LT #Males #Females Average Age

English
1 20 4 49
2 18 6 44

1+2 38 10 46

Chinese
1 12 12 26
2 14 10 35

1+2 26 22 31

German
1 12 12 24
2 14 10 26

1+2 26 22 25

Korean
1 12 19 38
2 15 9 20

1+2 27 21 29

Table 1. Gender and age distribution of participants in each of the
listening tests (LTs).

For the 7 NB anchor conditions, first, a decimation from 48 kHz
to 16 kHz using a high-quality (HQ) low-pass filter HQ3 is per-
formed. The resulting signal is then subject to the mobile station
input (MSIN) high-pass filter [18], simulating handset microphone
characteristics. The signal is then decimated using another high-
quality low-pass filter HQ2 to 8 kHz and then adjusted to an active
speech level [19] of −26 dBov. Simulating a mobile NB phone call,
the intermediate result NB′ is subject to 13 bit conversion [18], en-
coding and subsequently decoding (ENC/DEC) using the adaptive
multirate narrowband (AMR-NB) speech codec [20] at 12.2 kbps
and again the 13 bit conversion [18]. Following an interpolation to
16 kHz, the result is referred to as the AMR-NB anchor condition.
In addition, NB′ is processed via the modulated noise reference unit
(MNRU) [21] with speech-to-modulated-noise power ratios of 6 dB,
12 dB, 18 dB, 24 dB, 30 dB, and ∞ dB (direct). After interpola-
tion to 16 kHz, this processing path leads to 6 NB-MNRU anchor
conditions.

For the 9 WB anchor conditions, first, a 50 Hz high-pass fil-
ter (HP50) is applied, followed by a decimation by a factor of three
using HQ3 and active speech level adjustment to −26 dBov [19].
The intermediate result WB′ is then the basis for further processing.
For simulation of mobile HD-Voice calls, WB′ is converted to 14
bit [18], encoded and subsequently decoded by the adaptive multi-
rate wideband (AMR-WB) speech codec [22] at bitrates 8.85 kbps,
23.05 kbps, and 23.85 kbps and again converted to 14 bit represen-
tation [18]. The three resulting WB anchor conditions are referred to
as AMR-WB. In addition, WB′ is subject to MNRU processing [21]
with speech to modulated noise power ratios of 5 dB, 15 dB, 25 dB,
35 dB, 45 dB, and∞ dB (direct), leading to 6 WB-MNRU anchor
conditions.

The ABE solutions under test are applied to the AMR-NB con-
dition sampled at 8 kHz. Finally, all files are postprocessed by P.341
filtering [18], i.e., limited to an acoustical bandwidth of 0.05-7 kHz
and interpolated to 48 kHz sampling rate.

4. ABE APPROACHES

In this section, the 6 ABE approaches under test are briefly de-
scribed. All ABE approaches are based on the source-filter model
for speech production. Some of the institutions or consortia partici-
pated with several ABE schemes or parameter settings, resulting in
a total of 12 ABE variants / test conditions. The contributing part-
ners were asked to use blind ABE schemes with a maximum of 30
ms algorithmic delay. Please note that the approaches are ordered
alphabetically after the contributing institutions, with the ordering
unrelated to that of the results presented later in Section 5.
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Fig. 1. Block diagram of the data preprocessing steps; ABE conditions are processed subsequently to the AMR-NB condition.

4.1. Koç University, Istanbul
The spectral envelope is estimated along the Viterbi path of the NB
spectral envelope with minimum mean square error estimators [8].
The excitation extension is done using synchronous overlap and add
on the NB residual spectrum [23].

4.2. McGill University, Montreal
The ABE scheme is based on [5]. A GMM models the spectral
envelope using MFCCs while the UB excitation signal is obtained
by generation of white Gaussian noise modulated by the NB-based
equalized 3-4 kHz midband signal. In one variant based on [24],
speech temporal information is accounted for by incorporating delta
features into feature vectors, with the optimal static and delta feature
dimensionalities determined via empirical optimization. In a second
variant based on the idea of tree-based GMM extension [25], tempo-
ral information is accounted for by modeling the high-dimensional
distributions of long-term feature vectors via temporally-extended
GMMs.

4.3. Microsoft / Aalto University, Finland
The ABE scheme is based on [9]. An excitation signal is generated
from the linear prediction residual of the NB input signal by spectral
folding. An ANN is used to estimate the spectral envelope of the UB
from input features, and the spectrum is shaped with a time-domain
filter bank. An additional variant with a more conservative extension
was also provided.

4.4. RWTH Aachen University
The ABE algorithm is based on [10, 26]. The excitation is extracted
from the NB signal, spectrally flattened and copied to the UB with
some additive white noise. The spectral envelope applied afterwards
is estimated with the help of an HMM model with 128 states and 16
Gaussian mixture components per state based on zero crossing rate
and 13 MFCC features. A quadrature mirror filter synthesis filter
bank is used to combine NB and artificial UB to the final WB signal.

4.5. Technion, Haifa
The ABE approach is based on [4]. An excitation signal is generated
using a simple spectral copying technique. The spectral envelope
is estimated by means of a phonetic and speaker dependent statis-
tical approach. Speech phoneme information is extracted using an
HMM. Speaker vocal tract shape information is extracted by a code-
book search. Further processing of the estimated vocal tract shape
includes iterative tuning. Low frequencies in the NB signal are em-
phasized using an equalizer filter.

4.6. Technische Universität Braunschweig / NXP Software
The ABE approach is based on [27]. Following the source-filter
model, the spectral envelope is estimated using an HMM, while
the NB residual is extended applying spectral folding. HMM states
are defined in favor of critical phonemes to reduce misrepresenta-
tion [28]. Additional classifiers are employed to adaptively correct
overestimations [7, 11].

5. RESULTS

It is not recommended to perform a language-independent analy-
sis of the obtained results, since merging of listening tests would
change statistical properties, e.g., rank order of the different con-
ditions. However, the overall test is designed to allow mapping of
listening tests LT1 and LT2 within a language and thus enabling
language-dependent comparisons of all conditions at once. This as-
sumption was verified via hypothesis testing [31] of anchor condi-
tions checking for equality throughout both tests. Therefore, the
subjective votes of anchor conditions are put together and an anchor-
condition-based and language-dependent mean is calculated. After-
wards, linear regression coefficients for a mapping of the anchor con-
ditions towards the former mentioned language-dependent means are
calculated and applied to the scores of the ABE conditions. The fol-
lowing language-dependent analysis is based on the results of this
mapping process, merging LT1 and LT2 into one single listening
test per language, LT1+2.

Table 2 presents condition-based means for every language,
after linear mapping was applied. Clearly, the scores for both
NB- and WB-MNRU conditions are proportional to the speech-to-
modulated-noise-power ratio of the respective condition, thus show-
ing to which extent the MOS scale was used. The WB-MNRU at
∞ dB condition was scored the highest over all languages. Interest-
ingly, the score gap between NB-MNRU at∞ dB and WB-MNRU
at∞ dB shows a high dependency on language. On one hand, Ger-
man participants differentiate these two conditions by about 1.38
MOS points, thus substantiating the results obtained in [2] also on
coded speech. On the other hand, Chinese participants scored the
WB-MNRU at ∞ dB condition only 0.3 MOS points higher than
the respective NB condition. The gaps for English and Korean are
between 0.53 and 0.95 MOS points, respectively. Compared to,
for example, American English, Chinese contains fewer fricative
sounds [29, 30], the energy of which lies mostly at the higher fre-
quencies, and hence, could be one of the explanations for the rather
small noticeable difference between NB and WB in this language.

The AMR-NB and AMR-WB coded conditions were also
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Condition Chinese English German Korean

NB-MNRU
6 dB 1.15 1.08 1.06 1.09

12 dB 1.63 1.55 1.40 1.32
18 dB 2.21 2.16 1.89 1.84
24 dB 2.82 2.64 2.29 2.42
30 dB 3.36 3.24 2.93 2.96
∞ dB 4.12 3.76 3.31 3.54

WB-MNRU
5 dB 1.13 1.10 1.03 1.03

15 dB 1.64 1.67 1.56 1.54
25 dB 2.58 2.66 2.44 2.44
35 dB 3.65 3.64 3.58 3.57
45 dB 4.23 4.20 4.57 4.29
∞ dB 4.43 4.29 4.70 4.49

AMR-NB 3.98 (07) 3.48 (09) 3.07 (07) 3.37 (08)

ABE01 4.11 (02) 3.62 (04) 3.30 (04) 3.52 (06)
ABE02 4.16 (01) 3.78 (03) 3.42 (01) 3.75 (01)
ABE03 4.04 (04) 3.78 (02) 3.34 (03) 3.64 (02)
ABE04 3.99 (05) 3.61 (05) 3.21 (06) 3.58 (03)
ABE05 2.96 (13) 3.04 (11) 2.53 (11) 3.09 (11)
ABE06 2.96 (12) 2.96 (12) 2.53 (12) 2.84 (12)
ABE07 4.08 (03) 3.57 (06) 3.41 (02) 3.53 (04)
ABE08 3.98 (06) 3.82 (01) 3.27 (05) 3.48 (07)
ABE09 3.71 (09) 3.56 (07) 3.05 (08) 3.53 (04)
ABE10 3.47 (10) 3.16 (10) 2.69 (10) 3.32 (09)
ABE11 3.72 (08) 3.50 (08) 2.75 (09) 3.32 (09)
ABE12 3.05 (11) 2.87 (13) 2.48 (13) 2.63 (13)

AMR-WB
8.85 kbps 3.97 3.90 3.98 3.91

23.05 kbps 4.37 4.22 4.44 4.41
23.85 kbps 4.27 4.12 4.47 4.27

Table 2. Language-dependent results of listening tests after linear
regression of LT1 and LT2 towards anchor conditions mean result-
ing in LT1+2.; (..) shows the rank order of ABE and AMR-NB
conditions.

scored plausibly, with the higher bit rate and acoustical bandwidth
of AMR-WB being rewarded by the participants. Interestingly,
AMR-NB and AMR-WB at the lowest bit rate were scored simi-
larly in Chinese.

For ABE and AMR-NB conditions, Table 2 also shows the rank
order of the condition-based mean opinion scores. In general, ABE
solutions are not perceived similarly across languages. While the
rank of AMR-NB is roughly in the center of the ABE ranks, the rank
of certain ABE solutions varies quite a lot. ABE08 as an example is
the best ABE variant in American English, however, in Korean the
same ABE approach is ranked at position 7.

To analyze the question, whether an ABE solution improves the
underlying AMR-NB condition, a simple comparison of condition-
based mean values is not sufficient. Instead, a pair-wise comparison
of the condition-based means of all ABE conditions vs. AMR-NB
condition using two-sample t-test [31] was performed. In detail, for
each of the pair-wise comparisons, the null hypothesis H0 :µ1=µ2

that both condition means µ1, µ2 are equal to each other is tested.
The resulting p-values are shown in Table 3. The higher the p-values,
the more likely is the null hypothesis. The following conclusions
assume that if p < 0.05 then the difference between the means of
the two conditions is statistically significant.

First of all, none of the evaluated ABE approaches was able

Condition p-value for H0 true and H1 false
µ1 µ2 Chinese English German Korean

ABE01

A
M

R
-N

B

0.49 0.26 <0.05 (+) 0.37
ABE02 0.19 <0.05 (+) <0.01 (+) <0.01 (+)
ABE03 0.92 <0.05 (+) <0.05 (+) 0.08
ABE04 0.71 0.30 0.34 0.13
ABE05 <0.01 (−) <0.01 (−) <0.01 (−) <0.05 (−)
ABE06 <0.01 (−) <0.01 (−) <0.01 (−) <0.01 (−)
ABE07 0.17 0.49 <0.01 (+) 0.10
ABE08 0.75 <0.01 (+) <0.05 (+) 0.22
ABE09 <0.01 (−) 0.51 0.84 0.09
ABE10 <0.01 (−) <0.05 (−) <0.01 (−) 0.86
ABE11 <0.05 (−) 0.80 <0.01 (−) 0.84
ABE12 <0.01 (−) <0.01 (−) <0.01 (−) <0.01 (−)

Table 3. Results of the two-sample t-test for null hypothesis test:
ABE solutions vs. AMR-NB; (+): ABE condition mean is higher
than AMR-NB, (−): vice versa.

to give a consistent improvement over AMR-NB in all languages.
Particularly in Chinese, all ABE variants failed to show significant
improvement over AMR-NB. Furthermore, half of the tested ABE
solutions even degraded compared to the AMR-NB condition. This
might also be explained by the former mentioned smaller difference
between NB and WB speech w.r.t. the language and the resulting
lack of perceived higher acoustical bandwidth. At the same time,
artifacts introduced by ABE solutions remain and cause a degrada-
tion of subjective speech quality. For Korean, only ABE02 showed
improvement over the AMR-NB condition, 8 out of 12 ABE vari-
ants did not show significant difference compared to AMR-NB and
the last three degraded the quality with statistical significance. It is
worth noting that most of the ABE methods did not use Chinese and
Korean speech data in training hence potentially explaining the poor
ABE result for these languages.

In English, ABE solutions ABE02, ABE03, and ABE08 show
significant improvement over the AMR-NB condition. The same is
valid for the first three ABE conditions as well as ABE07 and ABE08

in German.
If an ABE solution is significantly better than AMR-NB, how

much of the gap between AMR-NB and AMR-WB at 23.05 kbps
could be closed? To calculate this measure of performance, the
condition-based mean of the ABE solution is subtracted by the cor-
responding mean of the AMR-NB condition and then divided by the
MOS distance between the AMR-NB and AMR-WB conditions. In
English, ABE02 and ABE03 filled the gap by 40% while ABE08

closed the gap by 46%. For German, ABE08, ABE01, ABE03,
ABE07, and ABE02 could fill the gap by 15%, 17%, 20%, 24%,
and 25%, respectively. In Korean, ABE02 closed the gap by 36%.

6. CONCLUSIONS
In this work, listening tests in American English, Chinese, German,
and Korean were conducted, evaluating 12 variants of ABE algo-
rithms processed by six institutions and consortia. Due to the large
number of conditions under test, listening tests were split into two
separate tests per language. A carefully chosen listening test design
enabled merging the scores from both listening tests via linear map-
ping, thereby making it possible to perform a language-dependent
analysis of all ABE variants in a joint manner.

It was shown that some ABE solutions were able to improve the
underlying coded narrowband speech signal with statistical signifi-
cance in English, German, and Korean. In these languages it was
possible to close the gap between coded narrowband and wideband
speech by up to 46%, 25%, and 36%, respectively.
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