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ABSTRACT

It is shown that under certain conditions it is possible to obtain a
good speech estimate from noise without requiring noise estimation.
We study an implementation of the theory, namely wide matching,
for speech enhancement. The new approach performs sentence-wide
joint speech segment estimation subject to maximum recognizability
to gain noise robustness. Experiments have been conducted to eval-
uate the new approach with variable noises and SNRs from -5 dB to
noise free. It is shown that the new approach, without any estimation
of the noise, significantly outperformed conventional methods in the
low SNR conditions while retaining comparable performance in the
high SNR conditions. It is further suggested that the wide match-
ing and deep learning approaches can be combined towards a highly
robust and accurate speech estimator.

Index Terms— Wide matching, noise robustness, speech en-
hancement, speech recognition

1. INTRODUCTION

Most deep neural network (DNN) systems are based on discriminat-
ing relatively short speech segments (typically, of 9 to 31 frames)
and hence have limited robustness to untrained noise. For example,
the recent DNN-based systems for speech recognition [1–6], speech
enhancement [7–10] as well as for image denoising [11] would nor-
mally require proper training for the noise types and SNR levels.
In this paper, we propose a complementary approach to speech en-
hancement by modeling very long speech segments, i.e., going wide,
with an aim of improving noise robustness without requiring noise
training or estimation. We will point out that the new approach and
the deep learning approach can be neatly combined towards a highly
robust and accurate estimator for estimating speech from noise. Our
idea can be best explained by using an oracle experiment.

We took a clean speech database (TIMIT) and expressed each
training sentence as a short-time power spectrum (STPS) sequence
S = (s1, s2, ..., sT ), where st is the STPS vector at frame time t.
Then we took each core test sentence, added different types of noise
(airport, babble, car, restaurant, street and train station) at an SNR
of 0 dB, and converted it to a STPS sequence X = (x1, x2, ..., xT ),
where each noisy STPS vector xt can be approximately expressed as
xt = s′t+nt, where s′t represents the underlying clean speech STPS
vector and nt represents the noise STPS vector. For each noisy frame
xt, we aimed at finding a best matching (clean) speech frame from
the training data as an estimate for s′t. We obtained the estimate,
denoted by ŝ′t, by maximizing the following normalized sample cor-

Fig. 1. An oracle experiment showing frame identification accuracy
increases with the length of the segments being correlated, for vari-
able test noises at SNR=0 dB, without noise estimation.

relation coefficient over all the training data

ŝ′t = argmax
sτ

R(xt±L, sτ±L)

= max
sτ

∑L
l=−L(xt+l −mx)

T(sτ+l −ms)

σxσs
(1)

where xt±L denotes a segment of noisy frames centered at frame xt
from xt−L to xt+L, mx is the mean vector of xt±L, and σx is the
mean-removed Euclidean norm of xt±L, i.e., σ2

x =
∑L
l=−L(xt+l−

mx)
T(xt+l −mx). The same definition applies to the clean train-

ing speech segment sτ±L, with mean vector ms and mean-removed
Euclidean norm σs. In this experiment, we included the clean ver-
sion of the test sentence in the training data (hence the ‘oracle’), to
examine under what condition the best matching estimates would be
chosen. Fig. 1 shows the accuracy rates of finding the best matching
frames based on (1) for variable segment lengths 2L + 1, averaged
over all the frames of all the core test sentences. We see that as L
increased, the best matching estimates using (1) were found with a
rapidly increasing probability regardless of the noise. However, the
same experiment using other types of distances or likelihoods failed
to see a similar trend. This oracle experiment, and the theory below,
suggest the potential of a new approach to accurate speech estima-
tion without requiring estimation of the noise if it is independent
of the speech. The remainder of the paper is aimed at generaliz-
ing the approach to more realistic test speech that is unseen in the
training data. When the test speech is unseen and noisy, we concate-
nate a number of short training segments into full sentences (i.e.,
the longest possible speech segments for the given noisy sentences)
with maximum normalized correlation coefficients, subject to the in-
dependence of the noise, to obtain noise-robust speech estimates.

Modeling long speech segments has been an active research
topic. This is important because longer speech segments can be
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distinguished easier in noise. Current methods were able to model
some short speech segments, for example, the speech segments
corresponding to some phonetic classes [12–14], and the speech
segments about 9-31 frames long in DNN systems [6–10]. Our
longest matching segment (LMS) approach [15–17] was able to
find the presumably longest individual speech segments between the
training and test speech that match. However, these segment-based
methods process the individual speech segments either indepen-
dently or with limited correlation (limited by the available training
data) as in some recurrent DNNs [1, 2, 4, 5], with limited effect in
capturing the longer-distance, cross-segment dependence of speech
for speech-to-speech separation in noise. Hence they all require
some noise estimation or training. The new approach presented
in this paper is radically different: it performs sentence-wide joint
speech segment estimation to gain noise robustness, and thus, it has
the potential to reduce or remove the need for noise estimation or
training as will be shown in our experiments. For convenience, we
call the new approach wide matching. In the following, we first
describe the wide matching theory. Then, we present a method to
implement wide matching for unseen test speech.

2. THE WIDE-MATCHING THEORY

Following the same notations as used above, for noisy frames xt =
s′t + nt, we can decompose the normalized sample correlation coef-
ficient R(xt±L, sτ±L), defined in (1), into two terms

R(xt±L, sτ±L) =
σs′

σx
R(s′t±L, sτ±L) +

σn

σx
R(nt±L, sτ±L) (2)

where s′t±L represents the underlying clean speech segment in the
noisy segment xt±L from s′t−L to s′t+L, and nt±L represents the
corresponding noise segment from nt−L to nt+L, with ms′ , mn

(implied) and σs′ , σn representing the mean vector and mean-
removed Euclidean norm of s′t±L and nt±L, respectively. The first
term is the normalized sample correlation between the underly-
ing speech segment s′t±L and the training speech segment st±L,
weighted by σs′/σx which is constant for all the training segments,
subject only to the SNR in the observation. The second term is the
normalized sample correlation between the noise segment and the
training speech segment, weighted by σn/σx which is again inde-
pendent of the training speech segment, subject only to the SNR in
the observation. For independent noise and large L, we may assume

R(nt±L, sτ±L) =

∑L
l=−L(nt+l −mn)

T(sτ+l −ms)

σnσs

∝ E[(nt −mn)
T(sτ −ms)] (3)

= E[nt −mn]
TE[sτ −ms] = 0 (4)

where (3) is based on the assumption that as the observation times
(i.e., L) become large, the time average converges to the ensemble
average (here we assume ergodicity for both the speech and noise
processes [18]); (4) is based on the assumption that the training
speech and noise are statistically independent. With (2)–(4), thus,
for large L and independent noise, we may have

max
sτ

R(xt±L, sτ±L) ∝ max
sτ

R(s′t±L, sτ±L) (5)

That is, the maximum correlation (i.e., the matching accuracy) could
become independent of the noise but depends only on the two speech
segments (one underlying and the other a potential estimate) being
compared. This theory is in good agreement with the experimen-
tal results in Fig. 1. It suggests the potential to obtain estimates of

speech without requiring noise estimation. For this, two conditions
must be met: 1) the speech s′t±L being correlated is long (i.e., L is
large), and 2) the estimate sτ±L is independent of the noise.

3. WIDE MATCHING FOR SPEECH ENHANCEMENT

3.1. A constrained maximization problem

Let X = (x1, x2, ..., xT ) be a noisy test sentence with the under-
lying speech sentence S′ = (s′1, s

′
2, ..., s

′
T ) unseen in the training

data. We seek an approach to concatenating a number of short train-
ing speech segments into a full sentence as an estimate of S′. In
the approach, the optimal element training segments are estimated
jointly to maximize the sentence-wide correlation with the noisy
sentence X . Given a noisy sentence, performing the sentence-wide
correlation maximizes the length (i.e., L) of the speech signal to be
correlated and hence the robustness to independent noise, i.e., to best
fulfil Condition 1 as required in the above theory.

Suppose we can divide X into some K consecutive segments,
denoted by X = (xt1 ,xt2 , ...,xtK ), where each segment xtk is
centered at some frame time tk with frames from xtk−γ to xtk+γ ,
where γ defines the length of the element segment. For simplicity,
we assume a common γ for all the element segments and so γ can
be implied in the expression. Adjacent element segments can have
some overlap to improve the smoothness. In a similar way, denote by
S = (gτ1sτ1 , gτ2sτ2 , ..., gτK sτK ) a chain of K clean training seg-
ments as an estimate of the underlying speech sentence in X, where
each element training segment sτk consists of consecutive frames
from sτk−γ to sτk+γ , and gτk is the gain of the element training
segment in forming the sentence estimate. In S, different training
segments sτk can come from different training sentences/contexts to
simulate unseen test speech. We estimate the optimal S based on the
sentence-wide, normalized sample correlation coefficient between
X and S. After some manipulation, this can be written as

R(X,S) = R(xt1xt2 ...xtK , gτ1sτ1gτ2sτ2 ...gτK sτK )

=

∑K
k=1 gτk

∑γ
l=−γ x

T
tk+l

sτk+l − Lm
T
XmS

σXσS
(6)

where L = (2γ+1)K is the sample length of the two full sentences
being correlated, mS and σS are the global mean vector and mean-
removed Euclidean norm of the training segment chain S,

mS =
1

L

K∑
k=1

gτk

γ∑
l=−γ

sτk+l (7)

σ2
S =

K∑
k=1

g2τk

γ∑
l=−γ

sTτk+lsτk+l − Lm
T
SmS (8)

The above expressions apply to mX and σX, the global mean vector
and mean-removed Euclidean norm of the noisy segment sequence
X (without the gain terms). In the above sentence-wide correlation
coefficient R(X,S), there is no assumption about the independence
between the speech frames or spectral coefficients within the element
segments, across the element segments or anywhere in the sentence.

Superficially, one may obtain an estimate of the optimal S by
maximizing the normalized correlation coefficient R(X,S) over all
possible chains of the training segments gτksτk . However, not all
of the chains constitute realistic speech; some chains with larger
R(X,S) may simulate the original noisy speech X well (as indi-
cated in (2), the correlation coefficientR(X,S) for perfectly match-
ing speech S′ and S is confined around σS′/σX < 1 for noisy
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speech). These false positives can happen when the element seg-
ments are very short and hence some noisy speech may be simulated
well by randomly chaining some very short speech segments. To
make the estimate to be valid speech, which is independent of the
noise and hence fulfils Condition 2 of the above theory, we use the
estimate’s recognizability, to a speech recognizer trained with clean
speech data, to regularize the formation of the optimal estimate S.
Thus, we can express the problem to obtain an optimal speech esti-
mate as the constrained maximization of the normalized correlation
subject to the maximum recognizability of the estimate

Ŝ = argmax
S

[logR(X,S) + λ logH(S)] (9)

where H(S) represents the confidence score of the estimate S to be
valid speech, and λ is a Lagrange multiplier. For the proof of the
concept, this paper uses an HMM-based phone recognizer to pro-
vide H(S). The recognizer is trained with clean speech and learns
the acoustic HMMs for context-independent phones, a bigram phone
language model, and the duration probability distributions of each
HMM state and monophone. The log likelihood score given by the
recognizer for a given S can be stated as

logH(S) = [log h(S)+

I∑
i=1

log pi(di)+

U∑
u=1

log pu(du)]/L (10)

where h(S) denotes the likelihood score of S given by the Viterbi
search, I and U are the numbers of HMM states and phones through
which the best path traversed, pi and pu are the duration probabil-
ity distributions of those states and phones, and di and du are the
durations spent in each state and phone, respectively. It is assumed
that among all possible training segment chains S, the chains con-
stituting valid clean speech are most recognizable to the recognizer,
in terms of achieving large scores H(S) (this is because valid clean
speech is most likely to simultaneously fulfil the acoustic, phone lan-
guage, state duration and phone duration constraints of clean speech
learned by the recognizer). If such a sentence-long chain with a
large noise-independent speech confidence score H(S) simultane-
ously has a large correlation coefficient R(X,S) with the noisy sig-
nal X, or vice versa, then it can be assumed that this is an optimal
estimate of the underlying speech in X. Hence we have (9).

3.2. An iterative estimation algorithm

We use a computationally efficient iterative algorithm to solve
the above constrained maximization problem (9), which seeks a
sentence-wide joint estimation of the element training segments
to form the optimal speech sentence estimate Ŝ. Given a noisy
sentence X, we start with an initial estimate Ŝ by separately es-
timating each element training segment sτk based on maximizing
the segment-level correlation coefficient R(xtk , sτk ) with a unit
gain gτk . Then we update this initial estimate by alternately re-
estimating each element training segment with gain to maximize
the sentence-wide constrained correlation coefficient (9); in re-
estimating a specific element training segment, the other element
training segments are fixed to their latest estimates. This alter-
nate re-estimation process is iterated until convergence is achieved.
For example, consider re-estimating the element training segments
gτksτk in the order from k = 1 to K. In the jth iteration, to
obtain a new estimate of the optimal kth element training seg-
ment, denoted by ĝjτk ŝ

j
τk , we maximize (9) with respect to gτksτk ,

with the succeeding element training segments gτmsτm (m > k)
from the (j − 1)th iteration, and the preceding element training

segments gτmsτm (m < k) from the jth iteration. Therefore
in the jth iteration and kth stage, the optimal speech sentence
estimate to be determined can be expressed as Ŝj(gτksτk ) =
(ĝjτ1 ŝ

j
τ1 , ..., ĝ

j
τk−1

ŝjτk−1
, gτksτk , ĝ

j−1
τk+1

ŝj−1
τk+1

, ..., ĝj−1
τK ŝj−1

τK ), which
is only a function of gτksτk , with the rest of the element training
segments fixed to their latest optimal estimates from the appropriate
iterations. The optimal sentence estimate can be obtained as follows

Ŝj(ĝjτk ŝ
j
τk )

= arg max
gτk sτk

[logR(X, Ŝj(gτksτk )) + λ logH(Ŝj(gτksτk )]

k = 1, 2, ...,K; j = 1, 2, ... (11)

with ĝ0τk ŝ
0
τk corresponding to the initial estimates. Eq. (11) rep-

resents an iterative algorithm to implement the sentence-wide joint
training segment estimation defined in (9). It manages to estimate the
element training segments one at a time, subject to the constraints of
all the other segments in the sentence, and hence can be calculated
efficiently. It can be shown that this algorithm converges in terms of
generating a speech sentence estimate that increases the constrained
correlation coefficient with each iteration. Details are given below.

4. EXPERIMENTAL STUDIES

Experiments have been conducted to evaluate the proposed wide-
matching approach for noisy speech enhancement, with a focus on
its performance without any estimation of the noise. The TIMIT
database was used in the experiments, which contains a training set
with 3696 speech sentences from 462 speakers (326 male, 136 fe-
male), and a core test set with 192 speech sentences from 24 speak-
ers (16 male, 8 female). There are no common speakers and sentence
texts between the training set and test set. The test set was added
with variable noises to form the unseen noisy test data.

Six different types of noise: airport, babble, car, restaurant,
street and train station, taken from Aurora 4 [19], were added to
each test sentence at four different SNRs: 10, 5, 0 and -5 dB, respec-
tively, measured on each sentence basis. The signals were sampled
at 16 kHz and divided into frames of 25 ms with a frame rate of
10 ms. Each frame was represented by a 40-coefficient short-time
power spectral (STPS) vector, taken from the output of a 40-channel
Mel-frequency filterbank. We formed the element training speech
segments used to perform the sentence-wide correlation and speech
estimation by taking each training frame in each training sentence
and forming a segment around the frame with a fixed length of 11
frames (i.e., γ = 5 in (6), a figure borrowed from the previous DNN-
based studies [20]). The noisy test sentences were each divided into
a sequence of consecutive segments each with the same length of
11 frames and with 8-frame overlap between adjacent segments.
As indicated in (9) or (11), the underlying speech is estimated by
performing sentence-wide correlation with the noisy sentences sub-
ject to maximum recognizability. Table 1 shows the statistics of the
length L = (2γ + 1)K of the test signals X that have been corre-
lated to derive the speech estimates Ŝ, for the 192 test sentences. We
take the overlapping frames between successive element segments
as effective signals as we found that some overlap did help improve

Table 1. Minimum, maximum and average sample length L =
(2γ + 1)K of the test sentences being correlated (unit: frame).

Min Max Average
440 2233 1023
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Table 2. Comparing the new wide-matching method with conven-
tional methods on the Segmental SNR, PESQ and STOI measures.

Method/SNR(dB) -5 0 5 10 clean
S Unprocessed -6.79 -4.26 -1.11 2.48
e LogMMSE -2.59 -0.31 2.23 4.96 19.28
g LogMMSE-SPU -1.31 0.43 2.71 5.35 19.00

Wiener filtering -3.94 -1.42 1.40 4.38 19.69
S KLT -1.62 0.36 2.64 5.05 15.28
N PKLT -1.52 0.46 2.85 5.34 15.29
R Wide matching 0.51 2.33 3.96 5.16 18.11

Unprocessed 1.39 1.74 2.09 2.44
P LogMMSE 1.60 2.01 2.38 2.72 4.39
E LogMMSE-SPU 1.26 1.73 2.18 2.58 4.37
S Wiener filtering 1.53 1.93 2.31 2.67 4.41
Q KLT 1.25 1.75 2.21 2.63 4.32

PKLT 0.97 1.50 2.00 2.48 4.31
Wide matching 1.76 2.19 2.54 2.79 4.22
Unprocessed 0.58 0.69 0.79 0.88

S LogMMSE 0.54 0.67 0.78 0.86 0.99
T LogMMSE-SPU 0.51 0.63 0.74 0.84 0.99
O Wiener filtering 0.56 0.68 0.79 0.88 0.99
I KLT 0.56 0.70 0.81 0.89 0.99

PKLT 0.50 0.67 0.79 0.88 0.99
Wide matching 0.68 0.79 0.86 0.90 0.98

the estimation accuracy, as in the DNN-based speech recognition.
The large L contributed importantly to improving noise robustness
without requiring noise estimation, to be shown below.

To form the recognizability constraint (10), we trained a simple
HMM-based recognizer using the 3696 training sentences. The rec-
ognizer contains 61 3-state HMMs for the TIMIT monophones, and
a bigram phone language model trained with the phonetic transcripts
of the training sentences. It also contains a state-duration probability
distribution for each of the 183 states and a phone-duration probabil-
ity distribution for each of the 61 monophones, expressed as the ap-
propriate histograms. In using the iterative algorithm (11) to derive
the optimal element segment estimates, we assumed that each local
segment gain (i.e., gτk ) could only change within the range [0.5, 2].
For each possible element training segment, we used a fast algorithm
(the golden section method) to search its optimal gain within the
range to maximize the sentence-wide constrained correlation. The
extra computation was found to be minimal. Unless otherwise indi-
cated, the following experiments were conducted with the constrain-
ing Lagrange multiplier λ = 0.1 in (11). We stopped the iteration
when no change was found between successive estimates. When an
optimal speech sentence estimate Ŝ was obtained, the corresponding
training speech frames were used to form optimal frequency-domain
filters applied to the appropriate noisy speech frames to reconstruct
the speech waveform, with the phase spectra taken from the noisy
speech. The same reconstruction procedures were used in [15] [17].

Table 2 summarizes the comparisons of the wide-matching
method against five conventional speech enhancement methods on
the Segmental SNR, PESQ and STOI [21] measures, respectively,
as a function of the input test sentence SNR averaged over 1152 test
sentences (i.e., 192 test sentences per noise type× 6 noise types) un-
der each SNR condition. The wide-matching method did not use any
noise estimation while the conventional methods, LogMMSE [22],
LogMMSE-SPU [23], Wiener filtering [24], KLT [25] and Percep-
tual KLT [26], each used an algorithm to estimate the noise. The

Table 3. The importance of the correlation length and recognizabil-
ity constraint (unconstrained when λ = 0), with SNR=0 dB.

Method/Measure Segmental SNR PESQ STOI
Segment matching 1.01 1.82 0.69

Wide matching, λ = 0 1.47 1.94 0.73
Wide matching, λ = 0.1 2.33 2.19 0.79
Wide matching, λ = 0.2 2.34 2.18 0.79
Wide matching, λ = 0.3 2.34 2.17 0.79

proposed wide-matching method significantly outperformed all the
conventional methods on all the three measures for each noise type
in all the low SNR conditions, with only a slight drop in performance
in the high-SNR (e.g., 10 dB or clean) conditions compared to the
conventional methods. Importantly, wide matching improved the
PESQ and STOI scores over those of the unprocessed noisy speech
in all the noisy conditions.

Table 3 uses an example (SNR=0 dB) to show the importance
of the length of the signals being correlated in improving noise ro-
bustness without noise estimation. It shows a comparison between
the sentence-wide correlation (i.e., (11)) with a sentence-dependent
length as shown in Table 1, and the segment-level correlation with
a fixed length of 11 frames, averaged over 1152 test sentences from
the six noise types. The segment-level correlation assumes indepen-
dence between the element segments and was used to provide the
initial estimates for iteration in (11). Table 3 also shows the im-
portance of the recognizability constraint in wide matching to help
obtain noise-independent speech estimates. Poorer-quality enhanced
speech was obtained without this constraint (i.e., the Lagrange mul-
tiplier λ = 0 in (11)). Finally, Table 3 shows the stability of the
proposed wide matching algorithm for a range of λ values.

Finally, Fig. 2 summarizes the convergence of the iterative algo-
rithm (11), showing the average numbers of iteration used in the esti-
mation, and the end-to-end values of the iteration of the constrained
correlation and the corresponding sample correlation R(X,S), re-
spectively, averaged overall all the test sentences and noise types.

Fig. 2. Increases in the constrained correlation (left, log scale) and
the corresponding sample correlation (right, linear scale) with itera-
tion, as a function of the test sentence SNR.

5. CONCLUDING REMARKS

A new method, namely wide matching, was presented that performs
sentence-wide joint speech segment estimation to improve noise ro-
bustness. Experimental results indicate that the new method has the
potential to significantly outperform conventional methods without
requiring noise estimation. The new method can be neatly combined
with the deep learning method with mutual benefits. For example,
a DNN-based speech recognizer can be used to replace the HMM-
based one to provide more accurate constraint on the speech esti-
mates, while the DNN-based recognizer can also benefit from the
combination by having improved robustness to untrained noise.
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