
RECURRENT NEURAL NETWORK TRAINING WITH DARK KNOWLEDGE TRANSFER

Zhiyuan Tang1,3, Dong Wang1,2∗, Zhiyong Zhang1,2

1. Center for Speech and Language Technologies (CSLT), RIIT, Tsinghua University
2. Tsinghua National Laboratory for Information Science and Technology

3. Chengdu Institute of Computer Applications, Chinese Academy of Sciences
{tangzy,zhangzy}@cslt.riit.tsinghua.edu.cn

∗Corresponding Author:wangdong99@mails.tsinghua.edu.cn

ABSTRACT

Recurrent neural networks (RNNs), particularly long
short-term memory (LSTM), have gained much attention in
automatic speech recognition (ASR). Although some suc-
cessful stories have been reported, training RNNs remains
highly challenging, especially with limited training data. Re-
cent research found that a well-trained model can be used as
a teacher to train other child models, by using the predictions
generated by the teacher model as supervision. This knowl-
edge transfer learning has been employed to train simple
neural nets with a complex one, so that the final performance
can reach a level that is infeasible to obtain by regular train-
ing. In this paper, we employ the knowledge transfer learning
approach to train RNNs (precisely LSTM) using a deep neu-
ral network (DNN) model as the teacher. This is different
from most of the existing research on knowledge transfer
learning, since the teacher (DNN) is assumed to be weaker
than the child (RNN); however, our experiments on an ASR
task showed that it works fairly well: without applying any
tricks on the learning scheme, this approach can train RNNs
successfully even with limited training data.

Index Terms— recurrent neural network, long short-
term memory, knowledge transfer learning, automatic speech
recognition

1. INTRODUCTION

Deep learning has gained significant success in a wide range
of applications, for example, automatic speech recognition
(ASR) [1]. A powerful deep learning model that has been
reported effective in ASR is the recurrent neural network
(RNN), e.g., [2, 3, 4]. An obvious advantage of RNNs com-
pared to conventional deep neural networks (DNNs) is that
RNNs can model long-term temporal properties and thus are
suitable for modeling speech signals.

A simple training method for RNNs is the backpropaga-
tion through time algorithm [5]. This first-order approach,
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however, is rather inefficient due to two main reasons: (1)
the twists of the objective function caused by the high nonlin-
earity; (2) the vanishing and explosion of gradients in back-
propagation [6]. In order to address these difficulties (mainly
the second), a modified architecture called the long short-term
memory (LSTM) was proposed in [7] and has been success-
fully applied to ASR [8]. In the echo state network (ESN) ar-
chitecture proposed by [9], the hidden-to-hidden weights are
not learned in the training so the problem of odd gradients
does not exist. Recently, a special variant of the Hessian-free
(HF) optimization approach was successfully applied to learn
RNNs from random initialization [10, 11]. A particular prob-
lem of the HF approach is that the computation is demand-
ing. Another recent study shows that a carefully designed
momentum setting can significantly improve RNN training,
with limited computation and can reach the performance of
the HF method [12]. Although these methods can address the
difficulties of RNN training to some extent, they are either too
tricky (e.g., the momentum method) or less optimal (e.g., the
ESN method). Particularly with limited data, RNN training
remains difficult.

This paper focuses on the LSTM structure and presents
a simple yet powerful training algorithm based on knowl-
edge transfer. This algorithm is largely motivated by the re-
cently proposed logit matching [13] and dark knowledge dis-
tiller [14]. The basic idea of the knowledge transfer approach
is that a well-trained model involves rich knowledge of the
target task and can be used to guide the training of other mod-
els. Current research focuses on learning simple models (in
terms of structure) from a powerful yet complex model, or an
ensemble of models [13, 14] based on the idea of model com-
pression [15]. In ASR, this idea has been employed to train
small DNN models from a large and complex one [16].

In this paper, we conduct an opposite study, which em-
ploys a simple DNN model to train a more complex RNN.
Different from the existing research that tries to distill knowl-
edge from the teacher model, we treat the teacher model as a
regularization so that the training process of the child model
is smoothed, or a pre-training step so that the supervised train-
ing can be located at a good starting point. This in fact leads
to a new training approach that is easy to perform and can
be extended to any model architecture. We employ this idea
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to address the difficulties in RNN training. The experiments
on an ASR task with the Aurora4 database verified that the
proposed method can significantly improve RNN training.

The reset of the paper is organized as follows. Section 2
briefly discusses some related works, and Section 3 presents
the method. Section 4 presents the experiments, and the paper
is concluded by Section 5.

2. RELATED TO PRIOR WORK

This study is directly motivated by the work of dark knowl-
edge distillation [14]. The important aspect that distinguishes
our work from others is that the existing methods focus on
distilling knowledge of complex model and use it to im-
prove simple models, whereas our study uses simple models
to teach complex models. The teacher model in our work
in fact knows not so much, but it is sufficient to provide a
rough guide that is important to train complex models, such
as RNNs in the present study.

Another related work is the knowledge transfer between
DNNs and RNNs, as proposed in [17]. However, it employs
knowledge transfer to train DNNs with RNNs. This still fol-
lows the conventional idea described above, and so is different
from ours.

3. RNN TRAINING WITH KNOWLEDGE
TRANSFER

3.1. Dark knowledge distiller

The idea that a well-trained DNN model can be used as a
teacher to guide the training of other models was proposed by
several authors almost at the same time [13, 14, 16]. The ba-
sic assumption is that the teacher model encodes rich knowl-
edge for the task in hand and this knowledge can be distilled
to boost the child model which is often simpler and can not
learn many details without the teacher’s guide. There are a
few ways to distill the knowledge. The logit matching ap-
proach proposed by [13] teaches a child model by encourag-
ing its logits (activations before softmax) close to those of
the teacher model in terms of the `-2 norm, and the dark
knowledge distiller model proposed by [14] encourages the
posterior probabilities (softmax output) of the child model
close to those of the teacher model in terms of cross entropy.
This transfer learning has been applied to learn simple mod-
els to approach the performance of a complex model or a large
model ensemble, for example, learning a small DNN from a
large DNN [16] or a DNN from a more complex RNN [17].

We focus on the dark knowledge distiller approach as it
showed better performance in our experiments. Basically, a
well-trained DNN model plays the role of a teacher and gen-
erates posterior probabilities of the training samples as new
targets for training other models. These posterior probabili-
ties are called ‘soft targets’ since the class identities are not as
deterministic as the original one-hot ‘hard targets’. To make
the targets softer, a temperature T can be applied to scale the

logits in the softmax, formulated as pi = ezi/T∑
j ezj/T

where i, j

index the output units. The introduction of T allows more in-
formation of non-targets to be distilled. For example, a train-
ing sample with the hard target [1 0 0] does not involve any
rank information for the second and third class; with the soft
targets, e.g., [0.8, 0.15, 0.5], the rank information of the sec-
ond and third class is reflected. Additionally, with a large
T applied, the target is even softer, e.g, [0.6, 0.25, 0.15],
which allows the non-target classes to be more prominent in
the training. Note that the additional rank information on the
non-target classes is not available in the original target, but
is distilled from the teacher model. Additionally, a larger T
boosts information of non-target classes but at the same time
reduces information of target classes. If T is very large, the
soft target falls back to a uniform distribution and is not infor-
mative any more1. Therefore, T controls how the knowledge
is distilled from the teacher model and hence needs to be set
appropriately according to the task in hand.

3.2. Dark knowledge for complex model training

Dark knowledge, in the form of soft targets, can be used not
only for boosting simple models, but also for training com-
plex models. We argue that training with soft targets offers
at least two advantages: (1) it provides more information for
model training and (2) it makes the training more reliable.
These two advantages are particularly important for training
complex models, especially when the training data is limited.

Firstly, soft targets offer probabilistic class labels which
are not so ‘definite’ as hard targets. On one hand, this matches
the real situation where uncertainty always exists in classifi-
cation tasks. For example, in speech recognition, it is often
difficult to identify the phone class of a frame due to the ef-
fect of co-articulation. On the other hand, this uncertainty in-
volves rich (but less discriminative) information within a sin-
gle example. For example, the uncertainty in phone classes
indicates phones are similar to each other and easy to get con-
fused. Making use of this information in the form of soft tar-
gets (posterior probabilities) helps improve statistical strength
of all phones in a collaborative way, and therefore is particu-
larly helpful for phones with little training data.

Secondly, soft targets blur the decision boundary of
classes, which offers a smooth training. The smoothness
associated with soft targets has been noticed in [14], which
states that soft targets result in less variance in the gradient
between training samples. This can be easily verified by
looking at the gradients backpropagated to the logit layer,
which is ti − yi for the i-th logit, where ti is the target and yi
is the output of the child model in training. The accumulated

1This argument should be not confused with the conclusion in [14] where
it was found that when T is also applied to the child net, a large T is equal
to logit matching. The assumption of this equivalence is that T is large com-
pared to the magnitude of the logit values, but not infinitely large. In fact, if
T is very large, the gradient will approach zero so no knowledge is distilled
from the teacher model.
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variance is given by:

V ar(t) =
∑
i

{Ex(ti − yi)2 − (Exti −Exyi)
2}

where the expectation Ex is conducted on the training data x.
If we assume that Exti is identical for soft and hard targets
(which is reasonable if the teacher model is well trained on
the same data), then the variance is given by:

V ar(t) =
∑
i

Ex(ti − yi)2 + const

where const is a constant term. If we assume that the child
model can well learn the teacher model, the gradient variance
approaches to zero with soft targets, which is impossible with
hard targets even if when the training has converged.

The reduced gradient variance is highly desirable when
training deep and complex models such as RNNs. We argue
that it can mitigate the risk of gradient vanishing and explo-
sion that is well known to hinder RNN training, leading to a
more reliable training.

3.3. Regularization view

It has been known that including both soft and hard targets
improves performance with appropriate setting of a weight
factor to balance their relative contributions [14]. This can be
formulated as a regularized training problem, with the objec-
tive function given by:

L (θ) = αLH(θ) + LS(θ)

=
∑
i

∑
j

(αtij + pij)ln{yij(θ)}

where θ represents the parameters of the model, LH(θ) and
LS(θ) are the cost associated with the hard and soft targets
respectively, and α is the weight factor. Additionally, tij and
pij are the hard and soft targets for the i-th sample on the j-th
class, respectively. Note that LH(θ) is the objective func-
tion of the conventional supervised training, and so LS(θ)
plays a role of regularization. The effect of the regulariza-
tion term is to force the model under training (child model)
to mimic the teacher model, a way of knowledge transfer. In
this study, a DNN model is used as the teacher model to reg-
ularize the training of an RNN. With this regularization, the
RNN training looks for optima which produce similar targets
as the DNN does, so the risk of over-fitting and under-fitting
can be largely reduced.

3.4. Pre-training view

Instead of training the model with soft and hard targets al-
together, we can first train a reasonable model with soft tar-
gets, and then refine the model with hard targets. By this way,
the transfer learning plays the role of pre-training, and the
conventional supervised training plays the role of fine-tuning.

The rationale is that the soft targets results in a reliable train-
ing so can be used to conduct model initialization. However,
since the information involved in soft targets is less discrimi-
native, refinement with hard targets tends to be helpful. This
can be informally interpreted as teaching the model with less
but important discriminative information firstly, and once the
model is strong enough, more discriminative information can
be learned.

This leads to a new pre-training strategy based on dark
knowledge transfer. In the conventional pre-training ap-
proaches based on either restricted Boltzmann machine
(RBM) [18] or auto-encoder (AE) [19], simple models are
trained and stacked to construct complex models. The dark
knowledge pre-training functions in a different way: it makes
a complex model trainable by using less discriminative in-
formation (soft targets), while the model structure does not
change. This approach possesses several advantages: (1) it is
totally supervised and so more task-oriented; (2) it pre-trains
the model as a whole, instead of layer by layer, so tends to be
fast; (3) it can be used to pre-train any complex models for
which the layer structure is not clear, such as the RNN model
that we focus on in this paper.

The pre-training view is related to the curriculum train-
ing method discussed in [20], where training samples that are
easy to learn are firstly selected to train the model, while more
difficult ones are selected later when the model has been fairly
strong. In the dark knowledge pre-training, the soft targets
can be regarded as easy samples for pre-training, and hard
targets as difficult samples for fine-tuning.

Interestingly, the regularization view and the pre-training
view are closely related. The pre-training is essentially a reg-
ularization that places the model to some location in the pa-
rameter space where good local minima can be easily reached.
This relationship between regularization and pre-training has
been discussed in the context of DNN training [21].

4. EXPERIMENTS

To verify the proposed method, we use it to train RNN acous-
tic models for an ASR task which is known to be difficult.
Note that all the RNNs we mention in this section are in-
deed LSTMs. The experiments are conducted on the Au-
rora4 database in noisy conditions, and the data profile is
largely standard: 7137 utterances for model training, 4620
utterances for development and 4620 utterances for testing.
The Kaldi toolkit[22] is used to conduct the model training
and performance evaluation, and the process largely follows
the Aurora4 s5 recipe for GPU-based DNN training. Specif-
ically, the training starts from constructing a system based
on Gaussian mixture models (GMM) with the standard 13-
dimensional MFCC features plus the first and second order
derivatives. A DNN system is then trained with the align-
ment provided by the GMM system. The feature used for the
DNN system is the 40-dimensional Fbanks. A symmetric 11-
frame window is applied to concatenate neighboring frames,
and an LDA transform is used to reduce the feature dimension
to 200, which forms the DNN input. The DNN architecture
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involves 4 hidden layers and each layer consists of 2048 units.
The output layer is composed of 2008 units, equal to the total
number of Gaussian mixtures in the GMM system. The cross
entropy is used as the training criterion, and the stochastic
gradient descendent (SGD) algorithm is employed to perform
the training.

In the dark knowledge transfer learning, the trained DNN
model is used as the teacher model to generate soft targets
for the RNN training. The RNN architecture involves 2 lay-
ers of LSTMs with 800 cells per layer. The unidirectional
LSTM has a recurrent projection layer as in [4] while the
non-recurrent one is discarded. The input features are the 40-
dimensional Fbanks, and the output units correspond to the
Gaussian mixtures as in the DNN. The RNN is trained with 4
streams and each stream contains 20 continuous frames. The
momentum is empirically set to 0.9, and the starting learning
rate is set to 0.0001 by default.

The experimental results are reported in Table 1. The per-
formance is evaluated in terms of two criteria: the frame ac-
curacy (FA) and the word error rate (WER). While FA is more
related to the training criterion (cross entropy), WER is more
important for speech recognition. In Table 1, the FAs are re-
ported on both the training set (TR FA) and the cross valida-
tion set (CV FA), and the WER is reported on the test set.

In Table 1, RNN-0 is the RNN baseline trained with hard
targets. RNN-T1 and RNN-T2 are trained with dark knowl-
edge transfer, where the temperature T is set to 1 and 2 re-
spectively. For each dark knowledge transfer model, the soft
targets are employed in three ways: in the ‘soft’ way, only soft
targets are used in RNN training; in the ‘reg.’ way, the soft
and hard targets are used together, and the soft targets play
the role of regularization, where the gradients of the soft’s are
scaled up with T 2 [14]. In the ‘pretrain’ way, the soft tar-
gets and the hard targets are used sequentially, and the soft
targets play the role of pre-training. The weight factor in the
regularization approach is empirically set to 0.5.

Targets FA% FA% WER%
TR CV

DNN Hard 63.0 45.2 11.40
RNN-0 Hard 67.3 51.9 13.57
RNN-T1 (soft) Soft 59.4 49.9 11.46
RNN-T1 (reg.) Soft + Hard 67.5 53.7 10.84
RNN-T1 (pretrain) Soft, Hard 65.5 54.2 10.71
RNN-T2 (soft) Soft 58.2 49.5 11.32
RNN-T2 (reg.) Soft + Hard 65.8 53.3 10.88
RNN-T2 (pretrain) Soft, Hard 64.6 54.1 10.57

Table 1: Results with Different Models and Training Methods

It can be observed that the RNN baseline (RNN-0) can not
beat the DNN baseline in terms of WER, although much ef-
fort has been devoted to calibrate the training process, includ-
ing various trials on different learning rates and momentum
values. This is consistent with the results published with the
Kaldi recipe. Note that this does not mean RNNs are inferior
to DNNs. From the FA results, it is clear that the RNN model

leads to better quality in terms of the training objective. Un-
fortunately, this advantage is not propagated to WER on the
test set. Additionally, the results shown here can not be in-
terpreted as that RNNs are not suitable for ASR (in terms of
WER). In fact several researchers have reported better WERs
with RNNs, e.g., [3]. Our results just say that with the Au-
rora4 database, the RNN with the basic training method does
not generalize well in terms of WER, although it works well
in terms of the training criterion.

This problem can be largely solved by the dark knowl-
edge transfer learning, as demonstrated by the results of the
RNN-T1 and RNN-T2 systems. It can be seen that with the
soft targets only, the RNN system obtains equal (T=1) or even
better (T=2) performance in comparison with the DNN base-
line, which means that the knowledge embedded in the DNN
model has been transferred to the RNN model, and the knowl-
edge can be arranged in a better form within the RNN struc-
ture. Paying attention to the FA results, it can be seen that
the knowledge transfer learning does not improve accuracy
on the training set, but leads to better or close FAs on the CV
set compared to the DNN and RNN baseline. This indicates
that transfer learning with soft targets sacrifices the FA per-
formance on the training set a little, but leads to better gener-
alization on the CV set. Additionally, the advantage on WER
indicates that the generalization is improved not only in the
sense of data sets, but also in the sense of evaluation metrics.

When combining soft and hard targets, either in the way
of regularization or pre-training, the performance in terms of
both FA and WER is improved. This confirms the hypothesis
that the knowledge transfer learning does play roles of regu-
larization and pre-training. Note that in all these cases, the
FA results on the training set are lower than that of the RNN
baseline, which confirms that the advantage of the knowl-
edge transform learning resides in improving generalizabil-
ity of the resultant model. When comparing the two dark
knowledge RNN systems with different temperatures T , we
see T=2 leads to little worse FAs on the training and CV set,
but slightly better WERs. This confirms that a higher tem-
perature generates a smoother direction and leads to better
generalization.

5. CONCLUSION

We proposed a novel RNN training method based on dark
knowledge transfer learning. The experimental results on the
ASR task demonstrated that knowledge learned by simple
models can be effectively used to guide the training of com-
plex models. This knowledge can be used either as a regu-
larization or for pre-training, and both approaches can lead
to models that are more generalizable, a desired property for
complex models. The future work involves applying this tech-
nique to more complex models that are difficult to train with
conventional approaches, for example deep RNNs. Knowl-
edge transfer between heterogeneous models is under investi-
gation as well, e.g., between probabilistic models and neural
models.
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