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ABSTRACT

Convolutional Restricted Boltzmann Machine (ConvRBM) as
a model for speech signal is presented in this paper. We have
developed ConvRBM with sampling from noisy rectified lin-
ear units (NReLUs). ConvRBM is trained in an unsupervised
way to model speech signal of arbitrary lengths. Weights
of the model can represent an auditory-like filterbank. Our
proposed learned filterbank is also nonlinear with respect to
center frequencies of subband filters similar to standard fil-
terbanks (such as Mel, Bark, ERB, etc.). We have used our
proposed model as a front-end to learn features and applied to
speech recognition task. Performance of ConvRBM features
is improved compared to MFCC with relative improvement
of 5% on TIMIT test set and 7% on WSJ0 database for both
Nov’92 test sets using GMM-HMM systems. With DNN-
HMM systems, we achieved relative improvement of 3% on
TIMIT test set over MFCC and Mel filterbank (FBANK). On
WSJ0 Nov’92 test sets, we achieved relative improvement
of 4-14% using ConvRBM features over MFCC features and
3.6-5.6% using ConvRBM filterbank over FBANK features.

Index Terms— Convolutional RBM, rectified linear
units, pooling, filterbank.

1. INTRODUCTION

Features for speech processing applications specifically in
speech recognition area, are based on properties of human au-
ditory processing [1], [2]. Many years of research have been
done to design auditory-based features for speech processing
applications. Some of the approaches are engineering-based
and some are based on representation learning, i.e., data-
driven models [2]. Representation learning is a growing re-
search area under machine learning where underlying model
can automatically discover features needed for detection or
classification from the raw signals [3], [4]. Unsupervised
learning is the most important form of representation learn-
ing since human learning is largely unsupervised [4], [5].
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Earlier works on unsupervised learning to learn filterbank
include use of Independent Component Analysis (ICA) ap-
plied to samples of speech signals in small windows [6], [7].
In [8], Non-negative Matrix Factorization (NMF) was applied
to speech power spectra to learn auditory-like filterbank. Re-
cently, Restricted Boltzmann Machine (RBM) with rectified
linear units (ReLUs) was used for representation learning in
ASR task [9]. To learn invariant representation and improve
scalability of RBM, Convolutional RBM was proposed [10].
ConvRBM with sigmoid units was applied in speech process-
ing applications using spectrograms to learn temporal modu-
lation features [11]. All previous unsupervised learning meth-
ods for speech signals perform similar to MFCC and filter-
bank features. However, these methods did not show im-
provements over these features. These methods rely on pro-
cessing with smaller windows of speech signals. We have
developed ConvRBM to model full length 1-D speech signals
using NReLUs to avoid problems with block-based process-
ing [12]. Convolutional models applied to speech signals in
time-domain provide shift invariance [12].

Recently, supervised learning has become quite popu-
lar for learning filterbanks and acoustic modeling from raw
speech signals such as study reported in [13], [14], [15],
[16]. Mel-like filterbank was learned from FFT spectra of
speech using DNN in [17]. We have separated unsupervised
filterbank learning using ConvRBM and supervised acoustic
modeling using GMM and DNN for ASR as done in [9].

In this paper, we have developed novel convolutional
RBM with rectified linear units that can model speech sig-
nal of any length in an unsupervised way. We have shown
that our learned filterbank has similar properties of hand-
crafted filterbanks. Experiments on TIMIT and WSJ0 speech
recognition task shows improved performance compared to
standard spectral features such as MFCC and Mel-filterbank.

2. CONVOLUTIONAL RBM FOR SPEECH SIGNALS

In this Section, we describe ConvRBM developed for mod-
eling speech signals of varying lengths. ConvRBM has two
layers, namely, visible layer and hidden layer [10]. The input
to ConvRBM is an entire speech signal of length n-samples.
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Hidden layer consists of K-groups (i.e., number of filters)
with filter length m-samples in each. Weights (also called
as filters or subband filters with respect to speech perception
[18]) are shared between visible and hidden units among all
the locations in each group [10]. If we denote bk as the hidden
bias for kth group, then response of the convolution layer is
given as:

Ik = (x ∗ w̃k) + bk, (1)

where x = [x1, x2, ..., xn] are samples of speech signal,
wk = [wk

1 , w
k
2 , ..., w

k
m] is a weight vector (i.e., kth filter)

and w̃ denote flipped array [10]. The energy function for
ConvRBM is given as,

E(x,h) =
1

2σ2
x

n∑
i=1

x2i −
1

σx

K∑
k=1

l∑
j=1

hkj Ik−
c

σ2
x

n∑
i=1

xi, (2)

where convolution length l = n−m+1 and c is a shared vis-
ible bias. Each speech signal is normalized to zero mean and
unit variance. Hence, variance (σx) in (2) is set to 1. Hidden
units are sampled using noisy ReLUs as suggested in [19]. We
have used single-step contrastive divergence for model learn-
ing [20]. Following are the sampling equations for hidden and
visible units (to reconstruct speech signal xrecon):

hk ∼ max(0, Ik +N(0, σ(Ik))),

xrecon ∼ N
(∑

k
(hk ∗ wk) + c, 1

)
,

(3)

where N(0, σ(Ik)) is a Gaussian noise with mean zero and
sigmoid of Ik as a variance andN (µ, 1) is Gaussian distribu-
tion with mean µ and variance 1.

After ConvRBM is trained, pooling is applied to reduce
representation of ConvRBM filter responses in temporal-
domain. Our model is different than used in [11] where
probabilistic max-pooling was used in inference stage itself
for binary hidden units. Our approach resembles the method
used in [21] where time-domain gammatone responses were
reduced using average-based framing, a pooling-like opera-
tion. For signal of sampling frequency Fs = 16 kHz, pooling
is applied using 25 ms (400 samples) window length (wl) and
10 ms (160 samples) shift (ws). We have used this setup to
compare standard spectral features (e.g., MFCC) extracted
using same windowing parameters. Pooling is performed
across time and separately for each filter. Speech signal with
n-samples has F = n−wl+ws

ws number of frames. We have
experimented with both average and max-pooling and found
better results with average pooling. After pooling operation,
stabilized logarithmic non-linearity log(·+0.0001) is applied
as done in [22].

The block diagram of the model described above is shown
in Figure 1. During feature extraction stage, we have used
deterministic ReLU non-linearity max(0, Ik) as activation
function of hidden units. Pooling operation reduce temporal
resolution from K × n samples to K × F frames. Logarith-
mic non-linearity compresses the dynamic range of features

which was found to improve performance in ASR [22]. The
feature extraction steps involved in this ordering resembles
the processing in human ear auditory representations [23].
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Fig. 1. Block diagram of stages in feature representation us-
ing trained ConvRBM. To shows figures on right side, filters
were arranged in increasing order of center frequency. (a)
speech signal, (b) and (c) responses from convolution layer
(same length) and ReLU nonlinearity, respectively, (d) pool-
ing operation, (e) logarithmic compression.

3. ANALYSIS OF FILTERBANK

3.1. Analysis of subband filters

Examples of subband filters learned using ConvRBM are
shown in Figure 2. Filters were arranged according to in-
creasing order of center frequencies. Weights of ConvRBM
were initialized randomly and there is no constraint on filter
shapes, still the model is able to learn meaningful representa-
tion. Impulse responses of filters in time-domain are shown
in Figure 2(a). We can see that many filters are very simi-
lar to auditory gammatone filters. Unlike the filters derived
using RBM [9], our filters resemble more like auditory fil-
ters for speech signals [7]. This may be due to the fact that
RBM was trained on randomly selected smaller windows of
speech signal and hence, they were in any random temporal
phase [9]. We have trained our model on speech signals in
time-domain without windowing to learn filters and pooled
later to get short-term spectrum representation. Figure 2(b)
shows frequency-domain representation of corresponding
time-domain impulse responses. We can see that all filters
are localized in frequency-domain with different center fre-
quencies. Filters with lower center frequencies are highly
localized in frequency-domain while filters with higher cen-
ter frequencies are more broad in terms of bandwidth and
hence, mimic human perception for hearing.

Our model can also accurately reconstruct speech signal
even after ReLU non-linearity. Small segment of original
speech (about 500 samples) from TIMIT database, segment
of a reconstructed speech from model (eq. (3)) and residual
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error is shown in Figure 3. From residual error, we can see
very accurate reconstruction of speech signal.
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Fig. 2. Examples of subband filters learned using ConvRBM:
(a) filters in time-domain (i.e., impulse responses), (b) filters
in frequency-domain (i.e., frequency responses).
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Fig. 3. (a) Segment of speech, (b) reconstructed from model,
(c) residual error. Root Mean Squared Error (RMSE) between
original and reconstructed speech is 0.0453.

3.2. Comparison with standard filterbanks

In order to compare our filterbank with standard auditory fil-
terbanks, we have shown center frequency vs. subband fil-
ter index plot in Figure 4. We can see that our filterbank has
also nonlinear relationship between center frequencies and fil-
ter ordering (and hence, bandwidth of filters) similar as other
auditory filterbanks. More number of subband filters are re-
quired for lower frequencies compared to higher frequencies.
Hence, our learned filters can represent frequency tuning in
human cochlea which can be modeled using a bank of sub-
band filters. The spectrum representation of filters obtained
following the steps in Figure 1, is compared with log-Mel
spectrogram in Figure 5. Similar as log-Mel spectrogram,
ConvRBM spectrogram indeed represent spectrum informa-
tion such as formant contours, voiced and unvoiced sounds.
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Fig. 4. Comparison of filterbank learned using ConvRBM
with auditory filterbanks.
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Fig. 5. (a) Speech signal, (b) spectrogram using ConvRBM
filterbank, (c) log-Mel spectrogram.

4. EXPERIMENTAL SETUP

4.1. Speech databases

Speech recognition experiments were conducted on TIMIT
[24] (for phone recognition task) and Wall Street Journal
WSJ0 database [25]. In TIMIT database, all SA category
sentences (same sentences spoken by all speakers) were re-
moved as they may bias the speech recognition performance.
Training data contains utterances from 462 speakers. De-
velopment and test sets contain utterances from 50 and 24
speakers, respectively. WSJ0 SI-84 training data consists
of 14 hours of speech data which includes 7138 utterances
spoken by 84 speakers. Two Nov’92 evaluation sets, namely,
5K-word and 20K-word vocabulary denoted as eval92 5K
and eval92 20K, respectively, were used for testing.

4.2. Training of ConvRBM and feature extraction

Mean-variance normalized speech signals were applied to
ConvRBM. Learning rate was chosen to be 0.005 which was
fixed for first 10 epochs and decayed later at each epochs for
stable learning. We observed that with NReLUs, only 25-35
training epochs were sufficient. For first five training epochs,
momentum was set to 0.5 and after that it was set to 0.9.
We have trained model with different lengths of ConvRBM
filters and with different number of filters. After model was
trained, features were extracted from speech signal as shown
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in Figure 1. To reduce dimension and compare with MFCC
feature set, Discrete Cosine Transform (DCT) was applied
(except in filterbank experiments) and only first 13-D were
retained. Delta and delta-delta features were also appended
resulting in 39-D feature vector.

4.3. ASR system building

For both databases, baseline monophone GMM-HMM sys-
tems were built using 39-D MFCC features. MFCCs were
extracted from windows of speech signal with 25 ms length
and 10 ms shift similar as parameters of pooling. For TIMIT
database, 48 phones were used for training and mapped to
39 phones during scoring [26]. Language modeling (LM)
was performed using bi-gram language model. For WSJ0
database, tri-gram language model was used. DNN-HMM
systems were built using Karel’s recipe (without pre-training)
in Kaldi [27] and results are reported with parameters: 3 lay-
ers, 1500 hidden units and 11 frame context-window.

5. EXPERIMENTAL RESULTS

5.1. Experiments on TIMIT database

The effect of number of filters, filter length and pooling type
is verified through experiments on TIMIT database using
GMM-HMM systems and results are reported in Table 1. We
can see that optimal filter length corresponding to least Phone
Error Rate (PER) is 128 samples on development (Dev) and
test set. Filter length 128 samples, i.e., 8 ms is sufficient to
capture small temporal variations in speech signals [7]. In our
case, average pooling works better than max-pooling. Since
we are using rectifier nonlinearity, it eliminates cancellations
between neighboring filter outputs when combined with av-
erage pooling [28]. Best performance is obtained with 60
filters, 128 samples filter length and using average pooling.

Table 1. Comparison of number of subband filters, filter
length and pooling type on TIMIT database in % PER

No. of filters Filter length Pooling type Dev Test
40 128 Avg 32.0 32.6
60 128 Avg 31.2 31.8
80 128 Avg 31.5 31.9
60 96 Avg 31.4 32.5
60 160 Avg 31.7 33.0
60 256 Avg 32.8 33.5
60 128 Max 32.6 33.5

Avg=Average, Max=Maximum

The comparison of MFCC and ConvRBM features us-
ing GMM-HMM systems are shown in Table 2. We can see
that ConvRBM features perform better than MFCC features
giving an absolute reduction of 1.5% in PER on develop-
ment set and 1.7% on test set. We also experimented on hy-
brid DNN-HMM system with forced aligned labels obtained
from corresponding GMM-HMM systems. To compare with

Mel-filterbank features (FBANK), we have used ConvRBM
trained on 40 filters even though less improvement in GMM-
HMM systems compared to 60 filters. Table 2 shows that for
DNN-HMM systems there is relative improvement of 3% on
test set using ConvRBM features and 2.6% using ConvRBM
filterbank over MFCC and FBANK features, respectively.

Table 2. Results on TIMIT database in % PER
Feature set System Dev Test

MFCC (39-D) GMM-HMM 32.7 33.5
ConvRBM (39-D) GMM-HMM 31.2 31.8

MFCC (39-D) DNN-HMM 23.0 24.0
ConvRBM (39-D) DNN-HMM 21.9 23.3
FBANK (120-D) DNN-HMM 22.2 23.4

ConvRBM-filterbank (120-D) DNN-HMM 21.5 22.8

5.2. Experiments on WSJ0 database

For WSJ0 database, results of ASR experiments are reported
in Table 3 in terms of % Word Error Rate (WER). Perfor-
mance is improved using ConvRBM features compared to
MFCC features. For GMM-HMM system, there is an ab-
solute reduction of 0.99% WER on eval92 5K test set and
1.92% WER on eval92 20K test set over MFCC features. For
DNN-HMM systems, lowest WER 5.85% (3.6% relative im-
provement) for 5K test is achieved with ConvRBM filterbank
while improvement is less using ConvRBM features. For 20K
test set, ConvRBM features and ConvRBM filterbank yielded
almost similar WER (although both have different number of
filters). However, relative improvement of 14.6% over MFCC
and 5.6% over FBANK features is achieved.

Table 3. Results on WSJ0 database in % WER
Feature set System eval92 5K eval92 20K

MFCC(39-D) GMM-HMM 13.95 27.72
ConvRBM(39-D) GMM-HMM 12.96 25.80

MFCC(39-D) DNN-HMM 6.30 15.70
ConvRBM(39-D) DNN-HMM 6.05 13.40
FBANK (120-D) DNN-HMM 6.07 14.32

ConvRBM-
filterbank(120-D)

DNN-HMM 5.85 13.52

6. SUMMARY AND CONCLUSIONS

In this paper, convolutional RBM using NReLUs is developed
to model raw speech signals. Filters learned in ConvRBM re-
sembles auditory filters in human cochlea and also compara-
ble with other auditory filterbanks. Features extracted from
ConvRBM were used for speech recognition task. Experi-
ments on TIMIT and WSJ0 databases shows that ConvRBM
features perform better than standard spectral features in both
GMM-HMM and hybrid DNN-HMM systems. Our future
work will involve developing deep speech model where sec-
ond layer of ConvRBM can model auditory cortex and learn
2D Gabor-like subband filters. We will also use our model for
low resource and noise robust ASR task.
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